Charged side trajectory analysis

  • Константин Анатольевич Кузьмин K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University)
  • Сергей Михайлович Морозов K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University)
  • Анна Владимировна Рогожина National Research Moscow State University of Civil Engineering
Keywords: charged particle, non-uniform electric field, point source, mathematical model, differential equations system, point source field

Abstract

This article analyzes the behavior of a charged particle in the inhomogeneous electric field of a point source. A mathematical model is constructed and the solution of a system of partial differential equations is given.

Downloads

Download data is not yet available.

Author Biographies

Константин Анатольевич Кузьмин, K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University)

Candidate of Pedagogical Sciences, Associate Professor

Сергей Михайлович Морозов, K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University)

Candidate of Technical Sciences, Associate Professor

Анна Владимировна Рогожина, National Research Moscow State University of Civil Engineering

Teacher

References

1. Федулов В.И., Захидов Р.А., Анарбаев А. Частица в неоднородном потенциальном поле устройств фотовольтаики // Гелеотехника. – 2009. – № 3. – С. 28–36.
2. Федулов В.И., Морозов С.М. Потери кинетической энергии частицы в неоднородном потенциальном поле // Современное телевидение и радиоэлектроника: 19-я Междунар. науч.-техн. конф. –М., 2011. – С. 299–301.
3. Федулов В.И., Морозов С.М. О нелинейных характеристиках структур с неодно-родным потенциальным полем // Современное телевидение и радиоэлектроника: 19-я Меж-дунар. науч.-техн. конф. –М., 2011. – С. 301–304.
4. Fedulov V.I. ARW977788 Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams, ed. by E.M. Oks and I.G. Brown (Kluwer Academic Publishers, Dor-drecht, the Netherlands), 2003; 213–225.
5. Kroemer Herbert. Electrical and Computer Engineering Department, University of Cali-fornia, Santa Barbara, 2001.
6. Landau L., Lifchic E. The theory of a field. Moscow, 1998, Vol. 2, p. 78–79.
Published
2019-03-18
Section
Agroengineering