Effects of highly dispersed silica nanoparticles on the cryoresistance of devitrified Bos taurus cumulus-oocyte complexes

  • Татьяна Ивановна Кузьмина All-Russian Research Institute of Genetics and Breeding of Farm Animals – branch of Federal State Budget Scientific Institution “Federal Scientific Center for Animal Husbandry – VIZH named after Academician L.K. Ernst”
  • Татьяна Ивановна Станиславович All-Russian Research Institute of Genetics and Breeding of Farm Animals – branch of Federal State Budget Scientific Institution “Federal Scientific Center for Animal Husbandry – VIZH named after Academician L.K. Ernst”
  • Алексей Вячеславович Молчанов Saratov State Agrarian University named after N.I. Vavilov
Keywords: oocytes, in vitro, highly dispersed silica nanoparticles, сumulus, vitrification, BosTaurus

Abstract

The creation of the donor oocytes cryobank in agricultural animals will make it possible to significantly improve the introduction of high-tech cellular reproductive and DNA technologies (in vitro production of embryos, cloning, transgenesis, genome editing) into the animal husbandry practice. Despite the considerable efforts of cryobiologists and embryotechnologists, the problem of Bos Taurus oocyte cryoresistance has not been adequately solved. The search for effective cryoprotective agents (CPA) that preserve the integrity of cellular structures, their functional activity and the creation of a system for the cultivation of devitrified cells are the most important tasks of modern cryotechnologies. Highly dispersed silica nanoparticles (HDSns) are promising components for optimizing CPA systems and media for cultivating somatic and germ cells of ovarian follicles, as well as pre-implantation embryos of animals. In the present study the nature of the effect of HDSns on the somatic (cumulus), germ cells (oocytes) of ovarian cow follicles and the fertility of the ova was identified. The positive effects of HDSns on the safety and functional state of cumulus cells after devitrification and cultivation of cumulus - oocyte complexes were shown. The level of devitrified oocytes that have cultured with 0.001% of HDSns and have reached the metaphase II, significantly exceeded the level of matured devitrified oocytes   that have not treated with  HDSns (60% vs. 41 %, P<0.001 (χ2-test)).The yield of embryos at the blastocyst stage significantly increased when devitrified oocytes were cultured with HDSns (11% (13/121) vs. 5% (5/105), P <0.05). In addition to the observed positive effects of the HDSns on the cumulus morphology and maturation of devitrified Bos Taurus oocytes, the data obtained contribute to a better understanding of the mechanisms of functioning of somatic and germ cells from ovarian follicles under ultralow temperatures.

Downloads

Download data is not yet available.

Author Biographies

Татьяна Ивановна Кузьмина, All-Russian Research Institute of Genetics and Breeding of Farm Animals – branch of Federal State Budget Scientific Institution “Federal Scientific Center for Animal Husbandry – VIZH named after Academician L.K. Ernst”

Doctor of Biological Sciences, Professor

Татьяна Ивановна Станиславович, All-Russian Research Institute of Genetics and Breeding of Farm Animals – branch of Federal State Budget Scientific Institution “Federal Scientific Center for Animal Husbandry – VIZH named after Academician L.K. Ernst”

Candidate of Agricultural Sciences, Leading Researcher

Алексей Вячеславович Молчанов, Saratov State Agrarian University named after N.I. Vavilov

Doctor of Agricultural Sciences, Professor

References

1. Бойцева Е.Н., Бычкова Н.В., Кузьмина Т.И. Влияние наночастиц высокодисперсного кремнезема на апоптоз сперматозоидов BosTaurus // Цитология. – 2017. – Т. 59. – № 5. – С. 375–380.
2. Биофункциональные наноматериалы на основе высокодисперсного кремнезема, белка и аминоуглеводов / Н.П. Галаган [и др.] // Biopolymers and Cell. – 2010. – Т. 26(3). – С. 205–213.
3. Воздействие кремнийсодержащих соединений на развитие доимплантационных эмбрионов Bos taurus / И.В. Чистякова [и др.] // Вопросы нормативно-правового регулирования в ветеринарии. – СПб., 2018. – С.105–108.
4. Геращенко И.И. Мембранотропные свойства наноразмерного кремнезема // Поверхность. – 2009. – Вып. 1 (16). – С. 288–306.
5. Застосування наноматеріалу в ембріогенетичній системі in vitro отримання ембріонів свиней / А.Б. Зюзюн [и др.] // Фактори експериментальної еволюції організмів. – 2015. – Т.17. – С. 164–168.
6. Модификация этапов технологии витрификации ооцитов Bos taurus / Т.И. Кузьмина [и др.] // Таврический вестник аграрной науки, – 2017. – № 3 (11). – С. 80 –87.
7. Модернизация этапов технологии экстракорпорального созревания донорских ооцитов Bos taurus / Т.И. Кузьмина [и др.] // Аграрный научный журнал. – 2017. – № 3. – С. 9–14.
8. Настасієнко Н.С., Кузема П.О., Галаган Н.П. Дослідження біологічної активності кремнеземів, модифікованих ди-татриметилсілільними групами і сорбітом, повідношеннюдо сперматозоїдівбиківметодомфотон-кореляційноїспектроскопії // Фізикаживого. – 2010. – Т.18. – № 3. –С. 99–106.
9. Развитие доимплантационных эмбрионов Bos taurus и Sus scrofa domesticus, полученных из девитрифицированных ооцитов / Т.И. Кузьмина [и др.] // Генетика и разведение животных. – 2014. – № 4. – С. 15–19.
10. Чуйко А.А. Медицинская химия и клиническое применение диоксида кремния. – Киев: Наук. думка, 2003. – 416 с.

11. Eppig John J., Wigglesworth К. and Frank L. Pendola The mammalian oocyte orchestrates the rate of ovarian follicular development // Developmental Biology, 2002, Vol. 99, No. 5, P. 2890–2894.
12. Katkov I.I., Pogorelov A.G. Influence of exposure to vitrification solutions on 2-cell mouse embryos: II. Osmotic effects or chemical toxicity // CryoLetters, 2007, Vol. 28, P. 409–427.
13. Khalili M.A., Shahedi А., Nottola S.A. , Ashourzadeh S., Macchiarelli G., Palmerini M.G., Assist J. Vitrification of human immature oocytes before and after in vitro maturation: a review // Reprod. Genet, 2017, Vol. 34, P. 1413–1426.
14. Paul A.K., Liang Y., Srirattana K., Nagai T., Parnpai R. Vitrification of bovine matured oocytes and blastocysts in a paper container // Anim. Sci. J., 2018, Vol. 89, No. 2, P. 307–315.
15. Tarkowski A. An air-diying method for chromosomal preparation from mouse eggs // Cytogenetic, 1966, Vol.1, P. 394–400.
Published
2019-03-18
Section
Veterinary and livestock