Введение. В рамках выполнения стратегии развития рыбохозяйственного комплекса Российской Федерации на период до 2030 г. важно решить следующую задачу: «Обеспечить продовольственную безопасность в части достижения среднедушевого потребления рыбопродуктов в объемах не менее 22 кг в год» [4]. Важным этапом в осуществлении этой стратегии является индустриальное производство рыбы [2, 5]. Перспективное значение при этом имеют кормление и сохранность поголовья в связи с большой плотностью посадки рыбы в установке.

В настоящее время большая часть товарного рыбоводства в нашей стране представлена карповыхыми и другими видами растительноядных рыб. Поэтому особую актуальность приобретает выращивание клариеевых сомов как рыбы с высокими питательными и вкусовыми качествами. Также к преимуществам выращивания клариеевого сома относятся возможность выращивания при большой плотности посадки, быстрый рост, устойчивость к заболеваниям, выносимость при транспортировании [1].

К тому же способность сома использовать для дыхания атмосферный воздух позволяет отказаться от использования в составе уставновок замкнутого водоснабжения кислородного оборудования, что снижает капитальные затраты [3].

Цель данной работы – изучение влияния инновационных разработок в области физики высоких энергий на воду и продуктивные качества комбикорма при выращивании клариеевого сома.

Методика исследований. Эксперимент был реализован в научно-исследовательской лаборатории «Технологии кормления и выращивания рыбы» Саратовского ГАУ по схеме, представленной в табл. 1.

Обработку воды и кормов проводили с помощью кристаллических структур, созданных группой российских ученых. Энергия данных кристаллических структур благотворно влияет на биологическую активность объектов, улучшая их природные свойства.

По принципу аналогов для опыта отобрали 120 особей клариеевого сома средней мас-
<table>
<thead>
<tr>
<th>Группа</th>
<th>Количество особей</th>
<th>Условия содержания и кормления</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контрольная</td>
<td>30</td>
<td>Обычая вода + контрольный комбикорм</td>
</tr>
<tr>
<td>1-я опытная</td>
<td>30</td>
<td>Опытная вода + контрольный комбикорм</td>
</tr>
<tr>
<td>2-я опытная</td>
<td>30</td>
<td>Обычая вода + опытный комбикорм</td>
</tr>
<tr>
<td>3-я опытная</td>
<td>30</td>
<td>Опытная вода + опытный комбикорм</td>
</tr>
</tbody>
</table>

сой 20,0 г, приобретенных в ООО «Тамбовский осетр». Их разместили в четыре аквариума объемом 250 л, каждый с одинаковым воднообменом и термическим режимом. Каждый аквариум был оборудован независимой системой фильтрации воды и обеззараживания ее с помощью УФ-ламп.

Во всех аквариумах наливали воду из общей городской сети, а в аквариумы 1-й и 3-й опытных групп дополнительно устанавливали бутылки с водой, подвергнутой обработке высокой энергией (опытная вода). Энергия от опытной воды в бутылках передавалась окружающей ее воде в аквариуме. Опытную воду ставили в аквариумы 1-й и 3-й опытных групп в герметично закупоренных стеклянных емкостях по 0,5 л (2 шт.), заменяя бутылки один раз в две недели.

Контрольная и 1-я опытная группы получали контрольный комбикорм для сомов торговой марки «Лимкор» следующего состава: рыбная мука, пшеница, экстракты белка растительно-го происхождения, рыбий жир, шрот соевый, порошковый гемоглобин, растительное масло, премикс и комплекс BAV. Согласно схеме опыта, особям 2-й и 3-й опытных групп скарамливали тот же комбикорм, но подвергнутый обработке высокой энергией. В результате этого в нем изменялась молекулярная структура (опытный комбикорм).

Суточные нормы кормления рассчитывали с учетом роста рыбы. Разновую порцию корма корректировали исходя из полной его поедаемости. Температуру воды контролировали ежедневно, а рН воды и содержание в ней растворенного кислорода определяли еженедельно. Во время эксперимента температура воды в бассейнах была в среднем 28,3 °C. Содержание растворенного в воде кислорода – 3–4 mg/l, рН – 7,7.

Результаты исследований. Основными показателями, характеризующими рост и развитие рыбы, являются масса и сохранность. Результаты наших исследований свидетельствуют о том, что использование опытно-го комбикорма с измененной молекулярной структурой для выращивания кларневого сома способствует повышению продуктивности по сравнению с контрольным комбикормом. Динамика роста массы кларневого сома отражена в табл. 2.

По данным табл. 2, наибольшее увеличение ихтиомассы рыбы наблюдалось в 3-й опытной группе, где ее прирост составил 5860,0 г, что на 10 % выше, чем в контроле. Также во 2-й опытной группе, получавшей опытный комбикорм, прирост ихтиомассы был больше, чем в 1-й, получавшей контрольный комбикорм.

Питательные вещества, идущие на рост и развитие рыбы, поступают в ее организм из корма. В естественных водоемах каждый вид рыб приспособлен к питанию определенным кормом, добавляемым в разнообразных условиях, а в аквариуме жизнедеятельность рыб полностью зависит от количества и качества корма.

За период опыта было скумпложено по 8,8 кг комбикорма в каждой группе. Кормовой коэффициент во всех группах был на достаточно высоком уровне. Этому способствовал, прежде всего, стресс, которому подвергались рыбы в аквариумах из-за высокой интенсивности освещения и регулярных лабораторных исследований. Затраты корма на 1 кг прироста составили в контрольной группе 1,63 кг, в 1-й опытной – 1,82 кг, во 2-й опытной – 1,80 кг, в 3-й опытной – 1,49 кг. Таким образом, затраты корма на 1 кг прироста были наименьшими в 3-й опытной группе.

В контрольной группе сохранность головы была самой низкой – 62,5 %, в 1-й опытной – 95,2 %, во 2-й опытной – 83,3 %, в 3-й опытной – 80,8 %.

Необходимо отметить, что вода с измененной молекулярной структурой была более прозрачной, чем обычная (контроль). Это значительно снизило затраты на очистку системы фильтрации воды в аквариумах.

<table>
<thead>
<tr>
<th>Таблица 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая ихтиомасса рыбы</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Прирост, г</td>
</tr>
<tr>
<td>Сохранность, %</td>
</tr>
</tbody>
</table>
Заключение. При одинаковой начальной массе рыб скармливание им в опытных группах комбикорма с измененной молекулярной структурою и выращивание их в воде с измененной молекулярной структурою позволило увеличить ихтиомассу. Наибольшим приростом отличались самы 3-й опытной группы. По затратам кормов на 1 кг прироста 3-й опытная группа рыб также показала лучший результат — 1,49 кг. В ней была отмечена и лучшая сохранность поголовья — 80,8 %.

Полученные данные свидетельствуют об целесообразности использования рыбоводными хозяйствами инновационных гидрологических разработок и обработки комбикорма высокой энергии для выращивания карповых сомов в установках замкнутого водоснабжения.

СПИСОК ЛИТЕРАТУРЫ
4. Распоряжение Правительства РФ от 26 ноября 2019 г. № 2798-р. Об утверждении стратегии разви-

INFLUENCE OF COMPOUND FEED AND WATER WITH CHANGED MOLECULAR STRUCTURE ON THE GROWTH AND PRESERVATION OF CLARY CATFISH

Vasiliy Aleksey Alekseevich, Doctor of Agricultural Sciences, Professor, Head of the chair “Feeding, Zoohygiene and Aquaculture”, Saratov State Agrarian University named after N.I. Vavilov, Russia.

Tarasov Peter Sergeevich, Candidate of Agricultural Sciences, Associate Professor of the chair “Feeding, Zoohygiene and Aquaculture”, Saratov State Agrarian University named after N.I. Vavilov, Russia.

Rudneva Oksana Nikolaevna, Candidate of Economic Sciences, Associate Professor of the chair “Feeding, Zoohygiene and Aquaculture”, Saratov State Agrarian University named after N.I. Vavilov, Russia.

Korobov Alexander Alexandrovich, Post-graduate Student of the chair “Feeding, Zoohygiene and Aquaculture”, Saratov State Agrarian University named after N.I. Vavilov, Russia.

Bakanov Oleg Yuriievich, Senior Researcher, Federal State Unitary Enterprise “National Fish Resources, Russia.

Egorova Marina Anatolievna, Senior Researcher, Federal State Unitary Enterprise “National Fish Resources, Russia.

Keywords: molecular structure; crystal structure of water; compound feed; feeding; Clary catfish; growth; preservation; live weight.

The results of an experiment to study the effect of compound feed and water with a modified molecular structure on the growth and preservation of Clary catfish are presented. Water and feed processing was performed using crystal structures created by a group of Russian scientists. The energy of these crystal structures has a beneficial effect on the biological activity of objects, improving their natural properties. In the course of research, it was found that the greatest increase in body weight and safety of fish was observed in the experimental group, who were in the water with a changed molecular structure and ate feed with a changed molecular structure.