ПРИМЕНЕНИЕ ДИАЛЛЕЛЬНОГО АНАЛИЗА ПРИ ИЗУЧЕНИИ КОМБИНАЦИОННОЙ СПОСОБНОСТИ КУКУРУЗЫ

ЗАЙЦЕВ Сергей Александрович, Российский научно-исследовательский и проектно-технологический институт сорго и кукурузы «Россорго»

Анализируются результаты применения диаллельного анализа при изучении самоопыленных линий кукурузы. Отмечена средняя урожайность зерна у самоопыленных линий (2,30–2,84 т/га), а также среднегрупповые показатели гибридов (3,29–5,49 т/га). Выявлены эффекты общей и дисперсии специфической комбинационной способности линий. Расширенное по урожайности зерна позволяет расположить линии в следующей последовательности: CL 7 < МК 130 < РСК 25 < РН26 < Ук122Д. Ом 255 < МК 11 < X46 < Б1266 < ЛВ32 < РСК 7 < ЮВ 19 < РСК 3 < Ом232, КС 25 < Ом 28. Результаты анализа комбинационной способности самоопыленных линий кукурузы указывают на низкое значение эффекта ОКС у линий CL 7, Х46 и высокий эффект ОКС у линий РСК 7, МК 11, РСК 3. Существенно значимые показатели компонентов доминирования (H1, H2), по абсолютной величине превышают значения компонента D, характеризующего аддитивное действие генов. Разность между общей средней признака у всего потомства (т11) и средней родительских форм (т10) имеет положительные значения, что указывает на то, что доминирование направлено в сторону родительских форм с большей выраженностью признака. Анализ компонентов указывает на то, что в зависимости от условий выращивания, на проявление урожайности зерна влияют 2–7 генов или групп генов. В 2016–2017 гг. существенное влияние на урожайность зерна оказывал паратипический компонент дисперсии (E).

Введение. Успех и продолжительность выведения новых сортов и гибридов кукурузы во многом зависят от правильного подбора исходного материала, представляющего начальный этап селекционной работы [9]. Оценка комбинационной способности является одним из наиболее распространенных и эффективных методов генетического анализа исходного селекционного материала [4]. Для оценки комбинационной способности используют различные методы: свободное опыление, поликросс, топкросс и диаллельные скрешивания. Использование диаллельной схемы скрешиваний в отличие от других методов изучения комбинационной способности более трудоемко. Однако данный способ позволяет получить наиболее точную информацию об общей и специфической комбинационной способности, а также с его помощью возможно определить некоторые компоненты генетической дисперсии. В связи с этим диаллельный анализ нашел применение в работах с такими сельскохозяйственными культурами, как подсолнечник [8], рожь [3], соя [7] и ряд других. Оценка ОКС и СКС является наиболее ответственным этапом селекционной работы с небрежными линиями [6]. Точность оценки и ее пригодность для различных условий в значительной мере определяют возможность получения F1 гибридов, обеспечивающих высокие показатели хозяйственно-ценных признаков в различных регионах возделывания [1, 13]. Считается, что СКС подвержена действию модифицирующих факторов сильнее, чем ОКС, поэтому для получения надежных данных о характере наследования признака у конкретных комбинаций скрешивания необходимы испытания в течение длительного периода времени и в различных агроклиматических условиях [14].

Целью исследований являлось установление на разнообразном исходном материале (линии кукурузы) проявления эффектов ОКС и СКС, а также некоторых компонентов генетической дисперсии по признаку «урожайность зерна».

Методика исследований. Полевые опыты проводили в 2016–2019 гг. на опытном поле ФГБНУ РосНИИСК «Россорго» в соответствии с методикой [1]. Климат региона характеризуется как резко континентальный. ГТК в 2016 г. – 0,48, в 2017 г. – 1,05, в 2018 г. – 0,61, в 2019 г. – 0,56. Почва опытного участка – чернозем южный маломощный среднемощный тяжелосуглинистый. В пахотном слое содержание гумуса (по Тюрину) составляет 3,80–4,60 %, общего азота – 0,17–0,22 %, валового фосфора – 0,11–0,14 %, калия – 1,10–1,38 %. Плотность почвы составляет 1,20–1,32 г/см³, наименьшая влагаемость (НВ) слоя 0–30 см – 101,1 мм, слоя 0–100 см – 295,6 мм.

Генетический анализ компонентов генетической дисперсии проводили по В.И. Науман [15]. Обработка данных проводили с помощью компьютерной программы Agros-2.09.

Ранжирование по среднegrупповым показателям выявило относительную стабильность у гибридов, включающих в родословную линии Мк 11, РСК 7, РСК 3. Среднегрупповые показатели урожайности гибридов позволили расположить исходные компоненты в следующем порядке: CL 7 < Х46 < Од 28 < Бг1266, Ом 255 < ЮВ 19 < ЛВ32 < КС 25 < Ом232 < РСК 25 < Ук12Д2 < МК 130 U < РН26 < РСК 7, РСК 3 < МК 11.

Результаты анализа ОКС и СКС самоопыленных линий кукурузы, проведенного по диапазонной схеме, указывают на низкое значение эффектов ОКС по признаку «урожайность зерна» линий CL 7, Х46. Высокий эффект ОКС отмечен у следующих компонентов скрещивания: РСК 7, Мк11, РСК 3. (табл. 2). Относительно высокая дисперсия СКС в различные годы отмечена у линий РСК 3, Бг 1266, РН 26, Мк 11. Анализ данных указывает на то, что степень силы проявления эффекта ОКС и дисперсии СКС в некоторой степени изменяется под воздействием условий выращивания. Данное положение совпадает с аналогичными исследованиями с другими наборами линий [5].

Относительно высокие эффекты СКС выявлены в комбинациях: МК 11/РСК 7 (0,408–0,981), МК 11/ЮВ 19 (0,486–0,828), РН26/МК 11 (0,110–1,743), РН26/РСК 25 (0,305–0,738), РН26/Ом232 (0,425–1,324), Ук12Д2/РСК 25 (0,362–0,746), Ук12Д2/КС 25 (0,162–1,236), Х46/КС 25 (0,249–1,869), CL 7/РСК 3 (0,240–2,086), ЮВ 19/Бг1266 (0,221–1,597), ЛВ32 /Од 28 (0,260–0,841), РСК 7/РСК 3 (0,331–0,528).

Метод диапазонных скрещиваний также позволяет установить характер наследования количественных признаков, получить информацию о других генетических свойствах анализируемого эффектов (об аддитивных эффектах генов, степени и направлении доминирования генов, контролирующих развитие признаков, о соотношении частот доминантных и рецессивных генов в определенном локусе) [8].

В опыте отмечается отрицательная корреляция между значением признака и доминированием у родительских линий: 0,60 (2016 г.), 0,85 (2017 г.), 0,92 (2018 г.), 0,90 (2019 г.). Существенно зна,

чимые показатели компонентов доминирования (H1, H2), по абсолютной величине превышают зна,

чения компонента D, характеризующего аддитивное действие генов (табл. 3). Разность между общей средней признака у всего потомства (m1l) и средней родительских форм (m10) имеет положительные значения, что указывает на то, что доминирование направлено в сторону родительских форм с большей выраженностью признака.

В 2016–2019 гг. отношение H1/D больше единицы (3,16–7,12), что свидетельствует о положи-

Таблица 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>РН26</td>
<td>2,60</td>
<td>2,30</td>
<td>1,95</td>
<td>2,26</td>
<td>4,00</td>
<td>5,04</td>
<td>5,49</td>
<td>4,37</td>
</tr>
<tr>
<td>МК 130 U</td>
<td>2,17</td>
<td>2,59</td>
<td>1,81</td>
<td>1,74</td>
<td>3,44</td>
<td>4,76</td>
<td>5,88</td>
<td>4,44</td>
</tr>
<tr>
<td>МК 11</td>
<td>2,11</td>
<td>2,30</td>
<td>2,51</td>
<td>2,94</td>
<td>3,76</td>
<td>5,55</td>
<td>6,20</td>
<td>4,42</td>
</tr>
<tr>
<td>Ук12Д2</td>
<td>2,51</td>
<td>2,63</td>
<td>2,62</td>
<td>2,94</td>
<td>3,27</td>
<td>5,31</td>
<td>5,51</td>
<td>4,22</td>
</tr>
<tr>
<td>РСК 25</td>
<td>1,87</td>
<td>2,77</td>
<td>2,70</td>
<td>1,68</td>
<td>3,36</td>
<td>5,14</td>
<td>5,42</td>
<td>4,31</td>
</tr>
<tr>
<td>Ом 255</td>
<td>2,09</td>
<td>2,76</td>
<td>2,54</td>
<td>2,34</td>
<td>3,16</td>
<td>5,09</td>
<td>5,40</td>
<td>4,11</td>
</tr>
<tr>
<td>Х46</td>
<td>2,18</td>
<td>2,67</td>
<td>2,86</td>
<td>2,21</td>
<td>3,08</td>
<td>4,92</td>
<td>5,31</td>
<td>4,10</td>
</tr>
<tr>
<td>РСК 7</td>
<td>2,01</td>
<td>2,66</td>
<td>3,40</td>
<td>2,88</td>
<td>3,58</td>
<td>5,27</td>
<td>5,73</td>
<td>4,36</td>
</tr>
<tr>
<td>СL 7</td>
<td>1,35</td>
<td>1,69</td>
<td>1,34</td>
<td>2,07</td>
<td>3,07</td>
<td>4,53</td>
<td>5,03</td>
<td>4,16</td>
</tr>
<tr>
<td>КС 25</td>
<td>2,76</td>
<td>3,45</td>
<td>3,43</td>
<td>2,53</td>
<td>3,03</td>
<td>5,03</td>
<td>5,49</td>
<td>4,42</td>
</tr>
<tr>
<td>ЮВ19</td>
<td>2,24</td>
<td>3,65</td>
<td>3,20</td>
<td>2,26</td>
<td>3,01</td>
<td>5,00</td>
<td>5,61</td>
<td>4,16</td>
</tr>
<tr>
<td>РСК 3</td>
<td>2,40</td>
<td>3,79</td>
<td>3,03</td>
<td>2,53</td>
<td>3,23</td>
<td>5,57</td>
<td>5,79</td>
<td>4,38</td>
</tr>
<tr>
<td>Бг 1266</td>
<td>2,30</td>
<td>3,08</td>
<td>2,27</td>
<td>2,80</td>
<td>2,98</td>
<td>5,36</td>
<td>5,13</td>
<td>4,28</td>
</tr>
<tr>
<td>ЛВ32</td>
<td>2,73</td>
<td>2,73</td>
<td>2,86</td>
<td>2,35</td>
<td>3,22</td>
<td>5,18</td>
<td>5,25</td>
<td>4,22</td>
</tr>
<tr>
<td>Од 28</td>
<td>3,08</td>
<td>3,23</td>
<td>3,43</td>
<td>2,64</td>
<td>3,31</td>
<td>4,84</td>
<td>5,16</td>
<td>4,30</td>
</tr>
<tr>
<td>Ом 232</td>
<td>2,33</td>
<td>3,12</td>
<td>3,94</td>
<td>2,76</td>
<td>3,17</td>
<td>5,11</td>
<td>5,38</td>
<td>4,37</td>
</tr>
<tr>
<td>Среднее значение</td>
<td>2,30</td>
<td>2,84</td>
<td>2,743</td>
<td>2,307</td>
<td>3,29</td>
<td>5,11</td>
<td>5,49</td>
<td>4,29</td>
</tr>
</tbody>
</table>

*Примечание: Р – среднее значение самоопыленной линии, Г – среднегрупповое значение гибридов
Таблица 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОКС</td>
<td>СКС</td>
<td>ОКС</td>
<td>СКС</td>
</tr>
<tr>
<td>RN26</td>
<td>0,62 k</td>
<td>0,53</td>
<td>–0,12 cde</td>
<td>0,55</td>
</tr>
<tr>
<td>MK 130 У</td>
<td>0,11 li</td>
<td>0,54</td>
<td>–0,31 b</td>
<td>0,23</td>
</tr>
<tr>
<td>MK 11</td>
<td>0,37 j</td>
<td>0,53</td>
<td>0,31 h</td>
<td>0,70</td>
</tr>
<tr>
<td>Ykн12D2</td>
<td>0,01 egfh</td>
<td>0,17</td>
<td>0,14 lgh</td>
<td>0,32</td>
</tr>
<tr>
<td>РСК 25</td>
<td>0,01 lgh</td>
<td>0,33</td>
<td>0,02 def</td>
<td>0,21</td>
</tr>
<tr>
<td>Ом 255</td>
<td>–0,13 abcd ef</td>
<td>0,14</td>
<td>–0,02 cdef</td>
<td>1,01</td>
</tr>
<tr>
<td>X46</td>
<td>–0,19 abc</td>
<td>0,16</td>
<td>–0,18 bc</td>
<td>0,44</td>
</tr>
<tr>
<td>РСК 7</td>
<td>0,21 i</td>
<td>0,30</td>
<td>0,12 fg</td>
<td>1,18</td>
</tr>
<tr>
<td>CL-7</td>
<td>–0,29 a</td>
<td>0,47</td>
<td>–0,61 a</td>
<td>0,48</td>
</tr>
<tr>
<td>КС 25</td>
<td>–0,17 abcd</td>
<td>0,17</td>
<td>0,01 cdef</td>
<td>0,30</td>
</tr>
<tr>
<td>ІОВ 19</td>
<td>–0,24 ab</td>
<td>0,33</td>
<td>0,00 cdef</td>
<td>0,35</td>
</tr>
<tr>
<td>ПСК 3</td>
<td>–0,04 cdegh</td>
<td>0,56</td>
<td>0,49 i</td>
<td>1,14</td>
</tr>
<tr>
<td>Бр2666</td>
<td>–0,26 a</td>
<td>0,50</td>
<td>0,24 gh</td>
<td>1,60</td>
</tr>
<tr>
<td>ЛВЗ2</td>
<td>–0,02 defg</td>
<td>0,45</td>
<td>0,05 ef</td>
<td>0,30</td>
</tr>
<tr>
<td>Од 28</td>
<td>0,10 ghi</td>
<td>0,34</td>
<td>–0,18 bc</td>
<td>0,46</td>
</tr>
<tr>
<td>Ом232</td>
<td>–0,09 bcd ef</td>
<td>0,19</td>
<td>0,03 ef</td>
<td>0,35</td>
</tr>
<tr>
<td>$F_{рьк}^2$</td>
<td>46,2*</td>
<td>21,5*</td>
<td>36,8*</td>
<td>36,6*</td>
</tr>
<tr>
<td>НСР (ОКС линий)</td>
<td>0,14</td>
<td>0,17</td>
<td>0,12</td>
<td>0,09</td>
</tr>
</tbody>
</table>

В тельном влиянии сверхдомирования. Значения отношения $H_2/4H_1$ в 2016–2018 гг. незначительно меньше, а в 2019 г. равняется теоретическому значению (0,25), что показывает на относительно равномерное распределение аллелей с положительными и отрицательными эффектами. Анализ компонентов указывает на то, что в зависимости от условий выращивания, на проявление урожайности зерна влияют 2–7 генов или групп генов.

Такое изменение количества генов соответствует модели эколого-генетического контроля количественных признаков, когда при смене лимитирующего признака внутри этой среды меняются спектр и число генов, детерминирующих один и тот же количественный признак [2].

Заключение. Использование диаллельного анализа позволяет определить компоненты генетической дисперсии и провести оценку самоопыленных линий кукурузы, включенных в рабочую коллекцию. В результате оценки самоопыленных линий кукурузы на комбинаторную способность по урожайности зерна отмечены высокие эффекты ОКС и дисперсия СКС у следующих компонентов

Таблица 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>оценка ± ошибка</td>
<td>оценка ± ошибка</td>
<td>оценка ± ошибка</td>
<td>оценка ± ошибка</td>
</tr>
<tr>
<td>D</td>
<td>0,04 ± 0,20</td>
<td>0,21 ± 0,11</td>
<td>0,75 ± 0,11</td>
<td>0,19 ± 0,05</td>
</tr>
<tr>
<td>F</td>
<td>–0,04 ± 0,45</td>
<td>0,16 ± 0,26</td>
<td>1,42 ± 0,27</td>
<td>0,13 ± 0,11</td>
</tr>
<tr>
<td>H_2</td>
<td>2,03 ± 0,42</td>
<td>3,05 ± 0,23</td>
<td>7,49 ± 0,27</td>
<td>3,82 ± 0,11</td>
</tr>
<tr>
<td>H_3</td>
<td>1,76 ± 0,35</td>
<td>2,71 ± 0,19</td>
<td>6,37 ± 0,24</td>
<td>3,78 ± 0,10</td>
</tr>
<tr>
<td>h</td>
<td>4,82 ± 0,24</td>
<td>16,70 ± 0,13</td>
<td>22,44 ± 0,16</td>
<td>12,79 ± 0,06</td>
</tr>
<tr>
<td>E</td>
<td>0,19 ± 0,06</td>
<td>0,15 ± 0,03</td>
<td>0,08 ± 0,04</td>
<td>0,03 ± 0,02</td>
</tr>
<tr>
<td>m11 – m10</td>
<td>1,11</td>
<td>2,05</td>
<td>2,37</td>
<td>1,79</td>
</tr>
<tr>
<td>$\sqrt{H1}/D$</td>
<td>7,12</td>
<td>3,81</td>
<td>3,16</td>
<td>4,49</td>
</tr>
<tr>
<td>H2/4H1</td>
<td>0,22</td>
<td>0,22</td>
<td>0,21</td>
<td>0,25</td>
</tr>
<tr>
<td>$\sqrt{(4DH1) + F/\sqrt{(4DH1) – F}}$</td>
<td>0,87</td>
<td>1,22</td>
<td>1,07</td>
<td>1,16</td>
</tr>
<tr>
<td>h/ H2</td>
<td>2,74</td>
<td>6,15</td>
<td>3,52</td>
<td>3,38</td>
</tr>
<tr>
<td>r</td>
<td>–0,60 (df = 8)</td>
<td>–0,85 (df = 10)</td>
<td>–0,92 (df = 5)</td>
<td>–0,90 (df = 6)</td>
</tr>
</tbody>
</table>
скращений: РСК 7, Мк11, РСК 3, Br1266, РН26. Даные линии возможно использовать при введении перспективных гибридных комбинаций и получении синтетических популяций. Линии X 46, CL 7, имеющие низкую ОКС, целесообразно использовать при введении отдельных ценных комбинаций. Установлено существенное влияние компонентов доминирования (H1, H2), а также то, что доминирование направлено в сторону родительских форм с большей выраженностью признака.

СПИСОК ЛИТЕРАТУРЫ

Зайцев Сергей Александрович, канд. с.-х. наук, ведущий научный сотрудник, Российский научно-исследовательский и проектно-технологический институт сорго и кукурузы «Россорго». Россия.
401005, г. Саратов, 1-й Институтский проезд, 4. Тел.: 8452794969; e-mail: zea_mays@mail.ru.

Ключевые слова: кукуруза; линия; гибриды; урожайность; изменчивость; ОКС; СКС; делянковый анализ.

APPLICATION OF DIALLEL ANALYSIS IN THE STUDY OF THE COMBINATION ABILITY OF CORN

Zaitsev Sergey Aleksandrovich, Candidate of Agricultural Sciences, Leading Researcher, Russian Research Institute for Sorghum and Maize "Rossozoro", Russia.

Keywords: corn; line; hybrids; productivity; variability; GCA; SCA; diallellic analysis.

The article discusses the results of the use of diallelic analysis in the study of self-pollinated lines of corn. The average grain yield of self-pollinated lines (2,30 – 2,84 t/ha), as well as the average group indicators of hybrids (3,29 – 5,49 t/ha) were noted. The effects of general and variance of the specific combining ability of the lines were revealed. Ranking by grain yield allowed us to arrange the lines in the following sequence: CL 7 < MK 130 U < RSK 25 < PH26 < Yk122D2, Om 255 < MK 11 < CH46 < Bg1266 < LV32 < RSK 7 < Yuv 19 < RSK 3 < Om232, KS 25 < Od 28. The results of the analysis of the combining ability of self-pollinated maize lines indicate a low value of the GCA effects in the lines of CL 7, CH46 and a high effect of GCA in the lines of RSK 7, MK11, RSK 3. Significantly significant indicators of the components of dominance (H1, H2), in absolute value exceed the values of component D, characterizing the additive effect of genes. The difference between the total average trait of all offspring (m11) and the average parental forms (m0) has positive values, which indicates that dominance is directed towards the parental forms with a greater severity of the trait. An analysis of the components indicates that, depending on the growing conditions, 2–7 genes or groups of genes affect the manifestation of grain yield. In 2016–2017 The paratyphatic component of dispersion had a significant effect on grain yield (E).