53

МОРФОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ ПИЩЕВАРИТЕЛЬНОГО КАНАЛА ПОДСВИНКОВ ПРИ ДОБАВЛЕНИИ В РАЦИОНЫ ХЕЛАТОВ

ЗИРУК Ирина Владимировна, Саратовский государственный аграрный университет имени Н.И. Вавилова

Изучая морфометрические показатели пищеварительного канала у подсвинков при добавлении в комбикорма комплекса микроэлементов на основе L-аспарагиновой кислоты, не выявлено какихлибо патологических изменений в строении его оболочек. Установлено, что 10 % аспарагинатов от нормы оказывается достаточным для обеспечения животных 2-й опытной группы более высокими защитными свойствами.

Введение. В обеспечении полноценного кормления животных большую роль играют минеральные вещества, в том числе микроэлементы. По данным отечественных и зарубежных исследователей, скармливание солей микроэлементов сельскохозяйственным животным для полноценного балансирования рационов по дефицитным минеральным веществам, в соответствии с нормами кормления, повышает продуктивность, улучшает обмен веществ и оказывает положительное влияние на качество мясной продукции [1, 2, 4, 5, 13].

Организму животных для постоянного нормального функционирования необходимо порядка 20 минеральных веществ [3, 8]. Минеральные добавки в виде неорганических солей, такие как сульфаты или оксиды разных металлов, слабо усваиваются организмом. В то же время усвоение солей органических аминокислот, которые более схожи по строению с живой клеткой, более доступно для организма, чем неорганических [6, 9, 11]. В последние десятилетия в ветеринарии и животноводстве широко применяются различные кормовые добавки, содержащие минеральные вещества.

Цель исследования — изучить влияние комплекса микроэлементов в связи с L-аспарагиновой кислотой на морфометрические показатели пищеварительного канала подсвинков.

Методика исследований. Научно-хозяйственный опыт был проведен в ООО «Время 91» Энгельсского района Саратовской области. Для проведения эксперимента подсвинков крупной белой породы разделили на 4 группы: контрольная, 1, 2 и 3-я опытные по 15 голов в каждой. Подсвинки, подобранные

по принципу аналогов, находились в опыте с 35-дневного возраста и по достижению ими 7 месяцев. Животным 1-й опытной группы в рацион добавляли 7,5 % от нормы комплекса микроэлементов, 2-й – 10 % и 3-й – 12,5 %; в контрольной – использовали основной рацион. Количество комплекса микроэлементов рассчитывали согласно суточной потребностиподсвинковвминеральных веществах неорганической формы (от нормы) [10]. Контрольные убои животных проводили в 4- и 7-месячном возрасте, у них брали кусочки желудка, тонкой и толстой кишки, гистологические срезы изготавливали по общепринятой методике [7, 12].

Микроскопическое исследование проводили при помощи биологического микроскопа «Биомед C-1» при увеличении окуляра на $10 \times$ и объектива на $4 \times$, $10 \times$, $40 \times$ и $100 \times$. Морфометрический анализ полученных данных осуществляли при помощи винтового окуляра-микрометра $MOB -1 \times 15 \times$ и окулярной линейки (в 60 делений) с последующей статистической обработкой количественных параметров гистологических структур. Микрофотосъемку гистологических препаратов проводили с использованием фотокамеры CANON Power Shot A 460 IS. Микроморфометрическое исследование осуществляли с помощью программы «Видео TecT - Морфология 5.2» с предустановленными методиками «Ручные измерения», предназначенной для статистической обработки измерений вручную нанесенных объектов, когда их автоматическое выделение 51 не представляется возможным по тем или иным причинам, а также «Автоматическое выделение масок объектов», предназначенной для статистической обработки изме-

рений, когда исследуемые объекты хорошо отличаются от фона и других объектов.

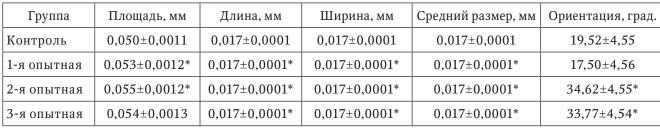
Результаты исследований. В результате проведенных исследований установлено, что морфологическая структура стенок пищеварительного канала у животных контрольной и опытной групп построена по общепринятому типу. Гистологическая картина оболочек желудков на протяжении всего опыта однотипна. Слизистая оболочка желудков подсвинков рельефная. У животных опытных групп рельеф слизистой неровный, формирует складки и ямки. Хорошо просматриваются желудочные ямки - овальные углубления эпителия в собственную пластинку, в некоторых из них наблюдали некоторое количество слизи. На всем протяжении начиная от собственной пластинки слизистой оболочки и до мышечной четко просматриваются округло-овальной формы неразветвленные фундальные (трубчатые) железы. У животных 2-й и 3-й опытных групп структура последних дифференцирована на отделы, где главные клетки дна железы наиболее развиты. В них различимы шейка, тело и дно.

Стенки желез образованы однослойным железистым эпителием, толщина которого с возрастом изменяется. Эпителиоциты преимущественно цилиндрической формы. Подслизистая оболочка четкая, представлена рыхлой соединительной тканью с кровеносными сосудами. При изучении стенки сосудов отмечали четкую их структуру и при увеличении микроскопа в 100 раз – полнокровие некоторых из них.

Мышечная оболочка представлена хорошо выраженными слоями: внутренний – косой, средний – циркулярный и наружный – продольный. Между ними отмечали наличие соединительнотканной прослойки. Серозная оболочка, покрывающая наружную часть мышечной оболочки, состоит из рыхлой соединительной ткани, снаружи покрыта ме-

зотелием, представленным из однослойного плоского эпителия.

Морфометрический анализ клеток желудка показал, что экзокриноциты имели относительно одинаковые размеры в опытных и контрольной группах (табл. 1).


Из данных табл. 1 следует, что средние морфометрические показатели клеток желудка (длина, ширина, средний размер) у подсвинков всех исследуемых групп находились на относительно стабильном уровне - 0.017 ± 0.0001 мм ($p \le 0.005$). Площадь экзокриноцитов у подсвинков 2-й опытной группы (10 % от нормы комплекса микроэлементов) незначительно превышала показатель своих сверстников в контроле на 0,005 мм, в 1-й опытной – на 0,002 мм (*p*≤0,005) и в 3-й - на 0,001 мм. Ориентация клеток у животных контрольной группы не превышала 19,52±4,55 град., в 1-й опытной группе находилась на уровне 17,50±4,56, в 3-й $-33,77\pm4,54$ град. и превышала своих аналогов контроля и 2-й опытной группы - $34,62\pm4,55$ град. ($p \le 0,005$).

Стенка слизистой оболочки тонкой кишки структурирована, слои хорошо выражены. Ворсинки эпителиального слоя четкие, покрыты однослойным цилиндрическим эпителием, который выстилает и крипты. Эпителиоциты, покрывающие ворсинки и крипты в своей апикальной части, имеют хорошо выраженную щеточную каемку (микроворсинки). В собственной пластинке слизистой оболочки рыхлая волокнистая соединительная ткань четкая. Подслизистая основа образована рыхлой волокнистой соединительной тканью с четкими сосудами и железами трубчато-альвеолярного строения. В ней также наблюдали достаточное количество кровеносных и лимфатических сосудов и скопление лимфатических фолликулов.

Мышечная оболочка у изучаемых подсвинков представлена в виде двух слоев: кольцевого и продольного, разделенных со-

Таблица 1

Морфометрические показатели экзокриноцитов желудка подсвинков

^{*} $p \le 0,005$ (здесь и далее).

единительнотканной прослойкой с межмышечным нервным сплетением. Структура слоев четкая, миоциты чаще всего вытянутой формы. Снаружи тонкая кишка, как и желудок, покрыта серозной оболочкой, представленной рыхлой соединительной тканью и мезотелием. Целостность ее не нарушена.

Гистологический анализ строения стенки тонкой кишки свидетельствует о том, что структура изучаемого органа во всех группах не нарушена: слои хорошо просматриваются и имеют четкие границы.

Мышечная оболочка образована двумя слоями гладких миоцитов – продольным и кольцевым. Серозная оболочка тонкая, на отдельных участках с невысокими складками, покрыта мезотелием, целостность ее не нарушена. Морфометрический анализ бокаловидных клеток тонкой кишки показал, что последние имели стабильно равные размеры у животных, как в опытных группах, так и в контроле (табл. 2).

Из данных, представленных в табл. 2, видно, что у подсвинков 2-й опытной группы параметры длины, ширины клеток и среднего их размера были выше на 0,001 мм аналогов контроля, а также 1-й и 3-й опытных групп. Аналогичную картину наблюдали с площадью клеток. У животных контрольной группы показатель составлял $0,051\pm0,0014$ мм, в 1-й опытной – $0,056\pm0,0015$ мм $(p\leq0,005)$, в 3-й – $0,054\pm0,0014$ мм и превышал своих аналогов 2-й опытной группы – $0,058\pm0,0015$ мм $(p\leq0,005)$. Ориентация клеток у животных в контроле и в 3-й

опытной группе составляла 19,40±3,55 и 16,36±3,54 град., а во 2-й и в 1-й опытных группах исследуемый параметр несколько превышал своих аналогов — 22,5±3,57 (p<0,005) и 32,73±3,58 град. (p<0,005) соответственно.

Строение оболочек толстой кишки у животных опытных групп сохранено, нарушений стенок не наблюдали. Крипты слизистой оболочки четкие и хорошо различимы у изучаемых нами животных. Эпителиальный слой представлен однослойным столбчатым эпителием, погружен в собственную пластину. В эпителии крипт животных опытных групп содержится значительное количество каемчатых эпителиоцитов и эндокринные клетки. У контрольных подсвинков наблюдали десквамацию эпителия слизистой, крипты не выражены, клетки слабо дифференцированы. В слизистой органа подсвинков опытных групп встречаются единичные лимфатические узелки.

В мышечной оболочке пучки гладких миоцитов идут продольно, формируя тяжи. В прослойках между тяжами наблюдается небольшое количество рыхлой соединительной ткани. Целостность оболочки не нарушена. Серозная оболочка представлена соединительной тканью, стенка тонкая, хорошо просматривается у подсвинков всех изучаемых групп.

Морфометрический анализ экзокриноцитов толстой кишки показал, что они имели большие размеры у животных 2-й и 3-й опытных групп, чем у аналогов 1-й опытной и контрольной групп (табл. 3).

Таблица 2 Морфометрические показатели бокаловидных клеток тонкой кишки подсвинков

Группа	Площадь, мм	Длина, мм	Ширина, мм	Средний размер, мм	Ориентация, град.
Контроль	0,051±0,0014	0,017±0,0002	0,017±0,0002	0,017±0,0002	19,40±3,55
1-я опытная	0,056±0,0015*	0,017±0,0002*	0,017±0,0002*	0,017±0,0002*	32,73±3,58*
2-я опытная	0,058±0,0015*	0,018±0,0003	0,018±0,0003	0,018±0,0003	22,5±3,57*
3-я опытная	0,054±0,0014	0,017±0,0002*	0,017±0,0002*	0,017±0,0002*	16,36±3,54

Таблица 3

Морфометрические показатели экзокриноцитов толстой кишки подсвинков

Группа	Площадь, мм	Длина, мм	Ширина, мм	Средний размер, мм	Ориентация, град.
Контроль	0,051±0,002	0,016±0,0008	0,016±0,0008	0,016±0,0008	28,13±2,05
1-я опытная	0,051±0,002	0,016±0,0008	0,016±0,0008	0,016±0,0008	20,0±2,03
2-я опытная	0,062±0,003	0,019±0,0009*	0,019±0,0009*	0,019±0,0009*	28,13±2,05*
3-я опытная	0,059±0,003	0,019±0,0009*	0,019±0,0009*	0,019±0,0009*	22,5±2,04*

АГРАРНЫЙ НАУЧНЫЙ ЖУРНАЛ

По данным, представленным в табл. 3, видно, что площадь экзокриноцитов у подсвинков 2-й опытной группы (10 % от нормы комплекса микроэлементов) превышала этот показатель в контроле и 1-й опытной группе на 0,011 мм, в 3-й – лишь на 0,003 мм. Параметры длины и ширины клеток животных 2-й и 3-й опытных групп на 0,003 мм превосходили контроль и 1-ю опытную группу. Аналогичную картину наблюдали и со средним размером экзокриноцитов: он был выше на 0,003 мм у подсвинков 2-й и 3-й опытных групп, чем у таковых 1-й опытной и контрольной групп. Ориентация клеток у животных контрольной и 2-й опытных групп составляла 28,13±2,05 град. (p≤0,005), 1-й опытной – $20,0\pm2,03$ град. и 3-й – 22,5 \pm 2,04 град. (p<0,005).

Таким образом, изменение толщины слизистой оболочки и увеличение количества крипт (в поле зрения) в толстой кишке указывают не только на возрастные изменения, но и на положительное влияние аспарагинатов на пищеварительную функцию толстой кишки и обменные процессы в организме в целом. Результаты морфометрических показателей оболочек органов пищеварительного канала представлены в табл. 4.

В 7-месячном возрасте толщина слизистой оболочки желудка у животных 1-й опытной группы была выше на 5,6 % по сравнению с контролем. В то же время у подсвинков 2-й опытной группы аналогичный показатель был выше на 9,6 % по сравнению с контролем и на 3,7 % по сравнению с животными 1-й опытной группы. К 7-месячному возрасту толщина мышечной оболочки желудка у животных 1-й и 2-й опытных групп колебалась от 127,6 до 128,6 мкм.

Толщина слизистой оболочки тонкой кишки к 7-месячному возрасту у подсвинков контрольной группы составляла 41,0 мкм, в 1-й 2-й опытных группах – 42,8 и 51,0 мкм соответственно. Толщина мышечной оболочки в 7-месячном возрасте у животных варьировала: в контрольной группе – от 15 до 16 мкм, в 1-й опытной – от 16 до 18 мкм и во 2-й – от 20 до 22 мкм. Улучшение процессов пищеварения, а также интенсивности химической обработки потребляемого корма и более активного всасывания поступающих витаминных, минеральных и питательных веществ в кровеносное русло способствует минимальному утолщению слизистой оболочки органа у животных опытных групп.

Таблица 4 Линамика толшины оболочек пишеварительного канала полсвинков

	динамика то	лщины ооолоч	ск пищеварите	chibitot o Kanaha	подсыников			
	Толщина оболочек, мкм							
Группа	слизистая оболочка		мышечная оболочка		серозная оболочка			
	4 мес.	7 мес.	4 мес.	7 мес.	4 мес.	7 мес.		
Желудок								
Контроль	60,6±0,56	117,2±1,23	31,2±1,29	36,6±0,89	7,2±0,29	9,1±0,22		
1-я опытная	65,4±0,65*	123,8±1,30	35,4±1,33**	38,6±1,25	7,1±0,31	9,5±0,42*		
2-я опытная	76,2±1,47	128,4±1,02**	33,8±1,64	37,6±0,79*	7,2±0,33	9,7±0,44*		
3-я опытная	74,3±1,32	123,9±1,01	32,6±1,33	37,0±0,69	7,0±0,23	9,6±0,20*		
Тонкая кишка								
Контроль	33,4±1,07	41,0±0,83	12,2±0,79	16,6±0,48	6,9±0,51	9,0±0,41		
1-я опытная	28,8±0,52	42,8±0,79**	13,0±0,81	17,8±0,63	7,0±0,22	9,2±0,40*		
2-я опытная	32,4±0,97	51,0±1,02**	14,6±0,79	22,0±0,94*	7,0±0,55	9,6±0,35*		
3-я опытная	29,1±0,97	51,0±1,01	14,3±0,71	21,0±0,84*	6,9±0,44	9,5±0,52*		
Толстая кишка								
Контроль	21,0±0,50	25,2±0,52	11,0±0,54	14,8±0,51	6,0±0,33	7,9±0,84		
1-я опытная	21,2±0,76	27,4±0,81**	13,0±0,83	15,0±0,54	6,1±0,31	8,2±0,51*		
2-я опытная	24,2±0,32	30,6±1,09*	15,4±0,93	17,2±0,58**	6,0±0,62	8,3±0,25**		
3-я опытная	22,2±0,29	29,1±1,07	15,2±0,93	16,4±0,41	6,1±0,26	8,3±0,57*		

* $p \le 0.005$; ** $p \le 0.001$.

Толщина слизистой толстой кишки в 7-месячном возрасте увеличилась и в среднем составила в контрольной группе $25,2\pm0,52$ мкм, в 1-й опытной (7,5 % от нормы комплекса микроэлементов) — $27,4\pm0,81$ мкм и во 2-й (10 % от нормы) — $30,6\pm1,09$ мкм. Толщина мышечной оболочки толстой кишки к концу опытного периода (7 мес.) увеличилась у животных контрольной группы ($14,8\pm0,51$ мкм), 1-й ($15,0\pm0,54$ мкм) и 2-й ($17,2\pm0,58$ мкм) опытных групп.

Заключение. Проведенные исследования позволили получить данные, подтверждающие улучшение гомеостаза, морфофункциональных показателей органов пищеварительного канала у подсвинков, получавших в составе рациона 10 % от нормы комплекса микроэлементов (Zn, Fe, Cu, Mn и Co) на основе L-аспарагиновой кислоты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Акчурин С.В., Акчурина И.В. Микроспектральный анализ клеток железистого желудка цыплят при антибактериальной терапии // Аграрный научный журнал. 2017. № 11. С. 3–6.
- 2. *Артемьев Д.А., Зирук И.В.* Гистоморфометрическое исследование подсвинков на откорме при добавлении в корма хелатов // Математические методы в технике и технологиях ММТТ. 2014. № 12 (70). С. 44–46.
- 3. Влияние некоторых видов патогенетической терапии на состав крови / Д.Б. Селянинов [и др.] // Ветеринария Кубани. 2012. № 4. С. 20–22.
- 4. Дежаткина С.В., Мухитов А.З. Соевые отходы производства в свиноводстве // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2011. Т. 206. С. 55–60.

- 5. Зирук И.В., Салаутин В.В., Катков Н.В. Морфология животных. Саарбрюкен, 2012. 202 с.
- 6. Лимфоидная ткань стенки толстой кишки волка canis lupus / А.Б. Панфилов [и др.] // Медицинская иммунология. 2017. Т. 19. С. 426.
- 7. *Меркулов Г.А.* Курс патогистологической техники. Л.: Медгиз. 1961. 341 с.
- 8. Микроэлементарный премикс на основе L-аспарагинатов микроэлементов / Е.Н. Андриянов [и др.] // Птицеводство. 2011. N° 3. C. 16—19.
- 9. Морфометрические показатели гранул зимогена в поджелудочной железе млекопитающих / О.В. Дилекова [и др.] // Морфология. 2018. Т. 153. \mathbb{N}^2 3. С. 95–95а.
- 10. Нормы и рационы кормления сельскохозяйственных животных. Справочное пособие / А.П. Калашников [и др.]. 3-е изд., перераб. и доп. M., 2003. 351 с.
- 11. Поветкин С.Н. Морфологическое строение кишечника мелкого рогатого скота // Современные достижения биотехнологии: материалы 2-й Всерос. науч.-техн. конф. М., 2002. С. 24–30.
- 12. Саркисов Д.С., Перов Ю.Л. Микроскопическая техника. М.: Медицина, 1996. С. 7–289.
- 13. Φ исинин В. Природные минералы в кормлении животных и птиц // Животноводство России. 2008. № 9. С. 62–63.

Зирук Ирина Владимировна, канд. вет. наук, доцент кафедры «Морфология, патология животных и биология», Саратовский государственный аграрный университет имени Н.И. Вавилова. Россия.

410005, г. Саратов, ул. Соколовая, 335. Тел.: (8452) 69-25-32.

Ключевые слова: желудок; тонкая кишка; толстая кишка; морфометрия; слизистая оболочка; мышечная оболочка; подсвинки; микроэлементы.

MORPHOMETRIC INDICATORS OF THE DIGESTIVE CHANNEL OF PIGLINGS WITH CHELATES IN THE FEED

Ziruk Irina Vladimirovna, Candidate of Veterinary Sciences, Associate Professor of the chair "Animal Morphology, Pathology and Biology", Saratov State Agrarian University named after N.I. Vavilov. Russia.

Keywords: stomach; small intestine; large intestine; morphometry; mucous membrane; muscular layer; pigling; trace elements.

Studying the morphometric characteristics of gilts' alimentary canal, no changes in its structure were revealed when having added microelements' complex on the basis of the L-asparaginic acid into the mixed fodder. According to the results of the conducted research, it was established that 10% of asparaginates are sufficient to provide animals of the 2nd experimental group with higher protective properties.

2019

