Study of effect of antioxidants and dietary fibres on microbiological and physicochemical properties of meat semi-finished products

Authors

  • Aleksey Germanovich Pervov Moscow State University of Civil Engineering
  • Dmitry Vladimirovich Spitsov Moscow State University of Civil Engineering

DOI:

https://doi.org/10.28983/asj.y2023i10pp205-219

Keywords:

reverse osmosis, nanofiltration, concentrate disposal, trihalomethanes removal, sludge dewatering

Abstract

he article describes examples of membrane technologies (reverse osmosis and nanofiltration) applied for quality drinking water production. In drinking water production practices, natural water often contains contaminants of anthropogeneous origin, such as halogenocarbons. The main principles for controlling the ratio of concentrations of different species in permeate are presented. They are based on the use of membranes with low rejection that require two membrane stages to achieve the designed chloroform removal efficiency. It is demonstrated how the feed water is treated with low rejection membranes on the first stage, and feed water flow is reduced by 30 times, calcium ion concentration increases by 25 times, total dissolved solids value increases by 15 times, and chloroform concentration increases by 10 times. The article demonstrates the results of calculations to evaluate total operational costs for cases where concentrate is reduced by 100–150 times in volume and is withdrawn together with the dewatered sludge as sludge moisture. The presented data indicate that the application of the developed ion separation method reduces total operational costs by 35–45 percent.

Downloads

Download data is not yet available.

References

Ventresque C., Gisclon V., Bablon G., Chagneau G. An outstanding feat of modern technology: the Mery-sur-Oise Nanofiltration Treatment Plant (340,000 m(3)/d). Desalination 2000; 131: 1–16. DOI:10.1016/S0011-9164(00)90001-8.

Watson B.M., Hornburg C. Low-energy membrane nanofiltration for removal of color, organics and hardness from drinking water supplies. Desalination. 1989; 72: 11–22.

Suratt W.B., Adrews D.R., Pujals V.J., Richards S.A. Design considerations for major membrane treatment facility for groundwater. Desalination. 2000; 131: 37-46. DOI:10.1016/S0011-9164(00)90004-3.

Lopes C., Petrus J., Riella H. Color and COD retention by nanofiltration membranes. Desalination. 2005; 172: 77–83.

Al-Qadami E., Ahsan A., Mustafa Z., Abdurrasheed S., Yusof K., Shah S. Nanofiltration membrane technology and its applications in surface water treatment: A review. Journal of Desalination and Water Purification. 2020; 18: 3–9. http://ababilpub.com/download/jdwp18-2/.

Tian J., Zhao X., Gao S., Wanng X., Zhang, R. Progress in Research and Application of Nanofiltration(NF) Technology for Brackish Water Treatment. Membranes. 2021; 11(9): 662. DOI:10.3390/membranes11090662.

Guo H., Yang W., Li, X., Yao Z. Nanofiltration for drinking water treatment: A review. Front. Chem. Sci. Eng. 2021; 15: 681–698.

Li S., Wang X., Guo Y., Hu J., Lin S., Tu Y., Chen L., Ni Y., Huang L. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. J. Clean. Prod. 2022; 333: 130171.

Jamaly S., Darwish N., Ahmed I., Hasan S.W. // A short review on reverse osmosis pretreatment technologies. Desalination. 2014; 354: 30–38. DOI:10.1016/j.desal.2014.09.017.

Mohammad A., Hilal N., Darwish N., Al-Zoubi H. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science. 2006; 289: 40–50, DOI:10/1016/j.memsci.2006.11.035.2006.

Hedayatipour M., Jaafarzadeh N. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration. J. Environ. Manag. 2017; 203 Pt 1: 151–156.

Alghamdi A. Recycling of Reverse Osmosis (RO) Reject Streams in Brackish Water Desalination Plants Using Fixed Bed Column Softener. Energy Procedia. 2017; 107: 205–211.

Turek M., Mitko K., Dydo P., Laskovska E., Jakobic-Kolon A. Prospects for high water recovery membrane desalination. Desalination. 2017; 401: 180–189. DOI:10.1016/j.desal.2016.07.047.

Pervov A., Spitsov D. Production of Drinking Water with Membranes with Simultaneous Utilization of Concentrate and Reject Effluent after Sludge Dewatering. Membranes. 2023; 13, 133. DOI:10.3390/membranes13020133.

Mohamed E., Ali A. Nanofiltration process for Enhanced Treatment of RO Brine Discharge. Membranes. 2012; 11, 312. DOI:10.3390/membranes11030212.

Van der Bruggen B., Koninckx A., Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research. 2004; 38, 1347–1353 DOI:10.1016/j.watres.2003.11.008.

Fengrui,Y., Zhi W., Fanglei Y., Jixiao W. Progress in separation of monovalent/divalent inorganic salt solutions by nanofiltration. CIESC Journal. 2021; 72, 799–813. DOI:10.11949/0438-1157.20200570.

Marchetti P., Jimenes M., Szekely G., Livingston A. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. ACS Publications. Chem. Rev. 2014; 114, 21, 10735–10806. DOI:10.1021/cr00006j.

Van Linden N., Shang R., Stockinger G., Heijman B., Spanjers H. Separation of natural organic matter and sodium chloride for salt recovery purposes in zero liquid discharge. Water Resources and Industry. 2020; 23, 100117. DOI:10.1016/j.wri.2019.100117.

Talaeipour M., Nouri J., Hassani A.H., Mahvi A.H. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. Journal of Environmental Health Science Engineering. 2017; 21, 15–18. DOI:10.118/s402010170279.

Wang Z., Deshmukh A., Du Y., Elimelech M. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water research. 2020; 170, 115317. DOI:10.1016/j.watres.2019.115317.

Ayoub G.M., Korban L., Al-Hindi M., Zayyat R. Removal of fouling species from brackish water reverse osmosis reject stream. Environmental Technologies. 2018; 39 (6), 804V813. DOI:10.1080/09593330.2017.1311946.

Wang Z., Deshmukh A., Du Y., Elimelech M. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Research. 2019; 170 (20), 115317. DOI:10.1016/j.watres.2019.1153417.

Cwikla J., Konieczny K. Treatment of sludge water with reverse osmosis. Environment Protection Engineering. 2011; 37 (4), 21-34.

Anis S., Hashaikeh R., Hilal H. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination. 2019; 452, 159–195.

Jiang S., Li Y., Ladewig B.P. A review of reverse osmosis membrane fouling and control strategies. Science Total Environ. 2017; 595, 567–583. DOI:10.1016/j.scitotenv.2017.03.235.

Goh P., Lau W., Othman M., Ismail A. Membrane fouling in desalination and its mitigation strategies. Desalination. 2018; 425, 130–155. DOI:10.1016/j.desal.2017.10.018.

Spitsov D., Aung H.Z., Pervov A. The selection of Efficient Antiscalant for RO Facility, Control of Its Quality and Evaluation of the Economical Efficiency of Its Application. Membranes. 2023; 13, 85. DOI:10.3390/membranes 13010085.

Pervov A., Shirkova T., Tikhonov K. Design of reverse osmosis and nanofiltration membrane techniques to treat landfill leachates and increase recoveries. Membr. Membr. Technol. 2020; 2, 296–309.

Pervov A., Tikhonov K., Dabrowski W. Application of reverse osmosis to teat high ammonia concentrated reject from sewage sludge digestion. Desalination and Water Treatment. 2018; 110, 1–9.

Pervov A., Andrianov A., Efremov R., Golovesov V. New Technique for Reducing Reverse Osmosis Concentrate Discharge. Membr. Technol. 2021; 3, 178–185.

Pervov A. Removal of calcium carbonate from reverse osmosis plant concentrates containing inhibitory substances. Membr. Technol. 2017; 3, 192–205.

Published

2023-10-25

Issue

Section

Agroengineering