Impact of lipopolysaccharides from rhizospheric bacteria on the growth of potato microplants under in vitro conditions

Authors

  • Maria Fedorovna Ivanova Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
  • Ekaterina Evgenievna Kostina Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
  • Yulia Anatolievna Filip’echeva Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Centre of the Russian Academy of Sciences
  • Yulia Petrovna Fedonenko Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Centre of the Russian Academy of Sciences
  • Aleksandra Aleksandrovna Krivoruchko Saratov State University
  • Anastasia Sergeevna Astankova Saratov State University
  • Oksana Viktorovna Tkachenko Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
  • Gennady Leonidovich Burygin Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov

DOI:

https://doi.org/10.28983/asj.y2024i3pp23-28

Keywords:

potato, micropropagation in vitro, rhizobacteria, lipopolysaccharide

Abstract

The surface of gram-negative bacteria is formed mainly by lipopolysaccharide molecules, which are involved in the interaction of microorganisms with various environmental objects, including plants. In this work, we studied the effect of lipopolysaccharides from six bacterial strains of different taxonomic groups on the growth of potato microplants cultivar Kondor under in vitro conditions. It was shown that the greatest positive effect on such parameters as shoot length, total root length, dry weight of shoots and roots was exerted by lipopolysaccharides of the strains Ochrobactrum quorumnocens T1Kr02 and Azospirillum thiophilum BV-S, the O-polysaccharides of which consist entirely or mostly degree from 6-deoxyhexose residues (fucose and rhamnose). The results can be used to more quickly select effective lipopolysaccharides and the bacteria that produce them as growth promoters for microplant cultivation under in vitro conditions.

Downloads

Download data is not yet available.

References

Государственный реестр селекционных достижений, допущенных к использованию. Т.1. Сорта растений. М.: ФГБНУ Росинформагротех, 2023. 631 с.

Характеристика структуры и генов биосинтеза О-антигенов Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T) и Azospirillum palustre B2(T) / Е. Н. Сигида [и др.] // Биоорганическая химия. 2022. № 48(3). С. 302–312. DOI: 10.31857/S0132342322030174.

Характеристика липополисахаридов бактерий рода Azospirillum, отнесенных к серогруппе II / Е. Н. Сигида [и др.] // Микробиология. 2014. № 83(4):. С. 416–425. DOI: 10.7868/S0026365614040156.

Dow M., Newman M. A., von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides // Annu. Rev. Phytopathol. 2000;38:241–261. DOI: 10.1146/annurev.phyto.38.1.241.

Effect of Azospirillum brasilense Sp245 lipopolysaccharides on wheat plant development / E. Ch?vez-Herrera, A. A. Hern?ndez-Esquivel, E. Castro-Mercado, E. Garc?a-Pineda // J. Plant Growth Regul. 2018;37:859–866. DOI: 10.1007/s00344-018-9782-2.

Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses/ N. V. Evseeva, O. V. Tkachenko, G. L. Burygin, L. Y. Matora, Y. V. Lobachev, S. Y. Shchyogolev // World J. Microbiol. Biotechnol. 2018;34:3. DOI: 10.1007/s11274-017-2386-3.

Galanos C., L?deritz O., Westphal O. A new method for the extraction of R lipopolysaccharides // Eur. J. Biochem. 1969;9:245–249. DOI: 10.1111/j.1432–1033.1969.tb00601.x.

Kutschera A., Ranf S. The multifaceted functions of lipopolysaccharide in plant-bacteria interactions // Biochimie. 2019;159:93–98. DOI: 10.1016/j.biochi.2018.07.028.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962;15:473–497.

Morphogenesis of wheat calluses treated with Azospirillum lipopolysaccharides / O. V. Tkachenko, G. L. Burygin, N. V. Evseeva, Y. P. Fedonenko, L. Y. Matora, Y. V. Lobachev, S. Y. Shchyogolev // Plant Cell, Tissue Organ Cult. 2021;147(1):147–155. DOI: 10.1007/s11240-021-02114-2.

Orlikowska T., Nowak K., Reed B. Bacteria in the plant tissue culture environment // Plant Cell Tissue Organ Cult. 2017;128:487–508. doi: 10.1007/s11240-016-1144-9.

Plant growth-promoting rhizobacteria for sustainable agricultural production / L. A. de Andrade, C. H. Santos, E. T. Frezarin L. R., Sales, E. C. Rigobelo // Microorganisms. 2023;11(4):1088. DOI: 10.3390/microorganisms11041088.

Structure, gene cluster of the O antigen and biological activity of the lipopolysaccharide from the rhizospheric bacterium Ochrobactrum cytisi IPA7.2 / E. N. Sigida, K. Y. Kargapolova, A. S. Shashkov, E. L. Zdorovenko, T. S. Ponomaryova, A. A. Meshcheryakova, O. V. Tkachenko, G. L. Burygin, Y. A. Knirel // Int. J. Biol. Macromol. 2020;154:1375–1381. DOI: 10.1016/j.ijbiomac.2019.11.017.

Published

2024-03-18

Issue

Section

Agronomy

Most read articles by the same author(s)