Effectiveness of statistical methods of assessing the adaptability of the soft spring wheat genotypes along the ecological vector

  • Валерий Владимирович Сюков Samara Scientific Research Institute of Agriculture
  • Владимир Григорьевич Захаров Ulyanovsk Scientific Research Institute of Agriculture
  • Петр Николаевич Мальчиков Samara Scientific Research Institute of Agriculture
  • Виталий Григорьевич Кривобочек Penza Scientific Research Institute of Agriculture
  • Владимир Иванович Никонов Bashkortostan Scientific Research Institute of Agriculture
  • Нурания Зуфаровна Василова Tatar Scientific Research Institute of Agriculture
  • Вадим Анварович Ганеев Scientific Industrial Firm “Fiton”
  • Надежда Васильевна Гулаева Samara Scientific Research Institute of Agriculture
  • Асхат Исмаилович Менибаев Samara Scientific Research Institute of Agriculture
Keywords: spring wheat, ecological selection, selection for plasticity, parameters of homeo-adaptability, AMMI model

Abstract

Breeding of the effective methods for assessing such complex features of the genotype as "adaptability" and "stability" in relation to each specific ecological situation is an actual research task. The existence of various methods and methodological approaches to the solution of these problems is explained by the history of the development of surveys of quantitative features and the phenomenon of genotype-environment interactions. The purpose of the present research is to compare the effectiveness of various methods for determining the ontogenetic adaptability of the formation of productivity of soft spring wheat cultivars of the Ekada program. The object of the research is a sample population formed from the cultivars of soft spring wheat, different in genealogy, place of creation and adaptability to the complexes of abiotic and  biotic factors of the environment: Bashkirskaya 26, Duet, Zemlyachka, KazanskayaYubileynaya, Lyubava, Lyubava 5, Margarita, Niva 2, Omskaya 35, Piramida, Tulaykovskaya 105, Ekada 6, Ekada 70. The crop was implemented at 6 ecological points. The trial has been held for three years (2009-2011). We studied 16 parameters, which were based on the methods of regression, dispersion analysis characterizing the linear and non-linear reaction of genotypes to the environment and the AMMI model (Additive Main-effects and Multiplicative Interaction). The experiment has shown that there is no universal parameter capable to adequately assess the biological essence of such concepts as "ecological plasticity", "homeostaticity", "stability", etc. The basic reason for the difficulty is that a genotypes response to environments is multivariate, yet the parametric approach triers to transform it to a univariate problem via a stability index. The expediency of applying of several widely used statistical parameters for assessment of the selection material was determined: ϬСАСi, Sgi – for assessing the phenotypic stability; bi , OASi – to assess responsiveness to a favorable environment and predict the response of the genotype to the environment; SCGi, ASV, YSV – for a complex assessment of the breeding value of the genotype. Methods Principal Components and the cluster analysis, the isolation of three non-inherited parameters (Sd2, λi, Wi) was determined, which confirms the data received by Lin, Bins (1988) about their use lessness in selection for adaptability and stability of the feature. Based on the complex of studied parameters of homeo-adaptability the cultivars that have been proposed for selection of the cultivars of a wide areal are: Ekada 70, Ekada 6, Zemlyachka, Duet, Omskaya 35. Margarita was not edly distinguished by efficient use of the resources in favorable environmental conditions (OASi, bi), which implies the expediency of using it in appropriate breeding programs.

 

Downloads

Download data is not yet available.

Author Biographies

Валерий Владимирович Сюков, Samara Scientific Research Institute of Agriculture

Doctor of Biological Sciences, Head of Laboratory

Владимир Григорьевич Захаров, Ulyanovsk Scientific Research Institute of Agriculture

Doctor of Agricultural Sciences

Петр Николаевич Мальчиков, Samara Scientific Research Institute of Agriculture

 Doctor of Agricultural Sciences

Виталий Григорьевич Кривобочек, Penza Scientific Research Institute of Agriculture

Doctor of Agricultural Sciences

Владимир Иванович Никонов, Bashkortostan Scientific Research Institute of Agriculture

Candidate of Agricultural Sciences

Нурания Зуфаровна Василова, Tatar Scientific Research Institute of Agriculture

candidate of agricultural sciences

Вадим Анварович Ганеев, Scientific Industrial Firm “Fiton”

Candidate of Agricultural Sciences

Надежда Васильевна Гулаева, Samara Scientific Research Institute of Agriculture

Junior Researcher

Асхат Исмаилович Менибаев, Samara Scientific Research Institute of Agriculture

Junior Researcher

References

1. Андрукович П.Ф. Применение метода главных компонент в практических исследованиях. – М., 1973. – 122 с.
2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. – М., 1983. – 416 с.
3. Драгавцев В.А., Аверьянова А.Ф. Переопределение генетических формул количественных признаков в разных условиях среды // Генетика. – 1983. –Т. 19 (11). – С. 1806–1810.
4. Драгавцев В.А., Цильке Р.А., Рейтер Б.Г. Генетика признаков продуктивности яровых пшениц в Западной Сибири. – Новосибирск, 1984. – 230 с.
5. Дюран Б., Оделл П. Кластерный анализ. – М., 1977. – 128 с.
6. Зиновьев А.Ю. Визуализация многомерных данных. – Красноярск, 2000. – 180 с.
7. Зыкин В.А., Белан И.А., Россеев В.М. Селекция яровой пшеницы на адаптивность: результаты и перспективы // Доклады РАСХН. – 2000. – №2. – С. 5–7.
8. Зыкин В.А., Белан И.А., Юсов В.С., Кираев Р.С., Чанышев И.О. Экологическая пластичность сельскохозяйственных растений (методика и оценка). – Уфа, 2011. – 97с.
9. Идрис А.А. Оценка методов определения стабильности урожайности и сопутствующих показателей сортов яровой пшеницы в Центральном регионе: дис. … канд. с.-х. наук. – М., 2003. – 127 с.
10. Кильчевский А.В., Хотылева Л.В. Экологическая селекция растений. – Минск, 1997. – 372 с.
11. Лыу Нгок Чинь. Количественные методы оценки пластичности генотипов растений: автореф. дисс. … канд. биол. наук. – Харьков, 1984. –151 с.
12. Мартынов С.П., Мусин Н.Н., Кулагина Т.В. Пакет программ, селекционно-ориентированных и биометрико-генетических методов «Agros». – Тверь, 1993. – Режим доступа:socionet. ru>.
13. Соболев Н.А. Методика оценки экологической стабильности сортов и генотипов // Проблемы отбора и оценки селекционного материала. – Киев, 1980. – С. 100–106.
14. Сюков В.В., Мадякин Е.В., Кочетков Д.В. Вклад генотип-средовых эффектов в формирование количественных признаков у инбредных и аутбредных растений // Информационный вестник ВОГиС. – 2010. – №14(1). – С. 141–147.
15. Терёхина А.Ю. Анализ данных методом многомерного шкалирования. М., 1986. – 168 с.
16. Хангильдин В.В., Шаяхметов И.Ф., Мардамшин А.Г. Гомеостаз компонентов урожая и предпосылки к созданию модели сорта яровой пшеницы // Генетический анализ количественных признаков растений. – Уфа, 1979. – С. 5–39.
17. Basford K.E., Cooper M. Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia // Aust. J. Agric. Res. 1998;49 (1):153–154.
18. Affleck I., Sulivan J.A., Tarn R., Falk D.E. Genotype by environment interaction of yield and quality of potatoes // Canad.J.Plant Sci. 2008;88(6):1099–1107.
19. Bach S. Genotype by environment interaction effects on starch, fibre and agronomic traits in potato (Solanum tuberosum L.) // An M.Sc.Thesis. Guelph, Ontario, Canada, 2011: 208.
20. Cooper M, De Lacy I.H. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments // Theor. Appl. Genet. 1994;88(3):561–572.
21. Cooper M., Byth D.E., De Lacy I.H. A procedure to assess the relative merit of classification strategies for grouping environments to assist selection in plant breeding regional evaluation trials. Field Crops Res. 1993;35(1):63–74.
22. Eberhart S.A., Russell W.A. Stability parameters for comparing varieties // Crop Sci. 1966;6(1):36–40.
23. Eeuwijk F.A. Linear and bilinear models for the analysis of multi-environment trials: I. An inventory of models // Euphytica. 1995;84(1):1–7.
24. Gabriel K.R. The biplot graphic display of matrices with application to principal component analysis // Biometrika. 1971;38(3):453–467.
25. Gauch H.G. Zobel R.W. AMMI analysis of yield trials. Chap. 4. // Kang M.S.; Gauch, H.G., (Eds) Genotype by environment interaction. CRC Press, Boca Raton, FL, USA. 1996:85–122.
26. Lin C.S., Binns M.R. A superiority measure of cultivar performance for cultivar × location data // Canad. J. Plant Sci. 1988;68(1):193–198.
27. Lin C.S., Binns M.R., Lefkovitch L.P. Stability analysis: where do we stand? // Crop Sci. 1986;26(5):894–900.
28. Martynov S.P. A Method for the Estimation of Crop Varieties Stability // Biom. J. 1990;7:887–893.
29. Purchase J.L., Hatting H., van Deventer C.S. Genotyp×environment interaction of winter wheat (Triticum aestivum L.) // South Africa: Stability analysis of yield performance. South Afric.J.PlantSoil.2000; 17:101–107.
30. Tai G.C.C. Genotyp stability analysis and its application to potato regional traits // Crop Sci. 1971;11(1):184–190.
31. Yan W., Tinker N.A. Biplot analysis of multienvironment trial data: Principles and applications // Canad.J.Plant Sci. 2006;86(3):623–645.
32. Wricke G. Die Erfassung der Wechselwirkung zwischen Genotyp und Umwelt bei quantitativen Eigenschaften // Z.Pflanzenzűchtung, 1965, B. 53, H. 1, S. 3–4.
33. Zobel R.W., Wright A.J., Gauch H.G. Statistical analysis of a yield trial // Agron. J. 1988;80:388–393.
Published
2019-02-22
Section
Agronomy