Применение антибиотиков в сельском хозяйстве и альтернативы их использования

Авторы

  • Мария Сергеевна Мирошникова Оренбургский государственный университет
  • Елена Петровна Мирошникова Оренбургский государственный университет
  • Азамат Ерсаинович Аринжанов Оренбургский государственный университет
  • Юлия Владимировна Килякова Оренбургский государственный университет

DOI:

https://doi.org/10.28983/asj.y2021i5pp65-70

Ключевые слова:

антибиотики, антибиотикорезистентность, кормление, тетрациклины

Аннотация

     Применение антибиотиков в медицине, растениеводстве и животноводстве привело к распространению устойчивости бактерий к противомикробным препаратам. Тетрациклины представляют собой химическую группу, имеющую большое значение в связи с широким применением данных препаратов в сельском хозяйстве. В связи с тем, что во всем мире используются значительные количества антимикробных препаратов тетрациклинового ряда их мониторинг играет важную роль. Поэтому необходимо добиться прогресса в анализе антибиотиков для оценки правильного использования и дозировки тетрациклинов в пищевых продуктах и  кормах, а также возможных остатков в соответствующих образцах окружающей среды.  В обзоре представлен анализ данных современных исследований, направленных на изучение проблемы антибиотикорезистентности, вызванной антимикробными препаратами группы тетрациклинов в мировой практике сельского хозяйства. Приведены данные о существующих и потенциально возможных альтернативах антибиотикам в животноводстве.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Мария Сергеевна Мирошникова, Оренбургский государственный университет

магистрант

Елена Петровна Мирошникова, Оренбургский государственный университет

д-р биол наук

Азамат Ерсаинович Аринжанов, Оренбургский государственный университет

канд с-х наук

Юлия Владимировна Килякова, Оренбургский государственный университет

канд биол наук

Библиографические ссылки

Abdelaziz A.I., Tawfik A.G., Rabie K.A., et al. Quality of community pharmacy practice in antibiotic self-medication encounters: a simulated patient study in upper Egypt // Antibiotics, 2019, Vol. 8, P. 35–49.

Agga G.E., Scott H.M., Amachawadi R.G. et al. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs // Prev Vet Med., 2014, Vol. 114 (3-4), P. 231–246.

Agwuh K.N., MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines // J. Antimicrob. Chemother,2006, P. 256–265.

Althaus R., Berruga M.I., Montero A. et al. Evaluation of a Microbiological Multi-Residue System on the detection of antibacterial substances in ewe milk // Anal Chim Acta, 2009, Vol. 632(1), P. 156–162.

Authority E.F.S., E.C.f.D Prevention, and control, The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014 // EFSA J.,2016, Vol. 14(2), P. 4380.

Bbosa G.S., Mwebaza N., Odda J. et al. Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance // Health,2014, Vol. 6(5),P. 410–425.

Black D.M., Rankin S.C., King L.G. Antimicrobial therapy and aerobic bacteriologic culture patterns in canine intensive care unit patients: 74 dogs (January-June 2006) // J Vet Emerg Crit Care (San Antonio), 2009, Vol. 19(5), P. 489–95.

Boothe D.M. The merck veterinary manual: tetracyclines. – 2015. http://www.merckvetmanual.com/mvm/pharmacology/antibacterial_agents/tetracyclines.html

Castanon J.I. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci.,2007,Vol. 86(11), P. 2466–2471.

Cunha B.A., Domenico P., Cunha C.B. Pharmacodynamics of doxycycline // Clin. Microbiol. Infec., 2000,Vol. 6, P. 270–273.

del Castillo J.R.E., Elsener J., Martineau G.-P. Pharmacokinetic modeling of in-feed tetracyclines in pigs using a meta-analytic compartmental approach // J. Swine Health Prod.,1998,Vol. 6, P. 189–202.

Du B., Wen F., Zhang Y. et al. Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk. Food Control., 2019,Vol. 100, P. 171–175.

European Commision. Annual Report 2007 on the Rapid Alert System for Food and Feed, http://ec.europa.eu/food/food/rapidalert/index en.html.

European Commission. On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Official Journal of the European Union, Commission Regulation (EU) No 37/2010, 2009,

European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017. European Medicines Agency; Amsterdam, The Netherlands: 2019.

Fritz J.W., Zuo Y. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography // Food Chemistry 2007, Vol. 105(3), P. 1297–1301.

Gadde U., Kim W.H., Oh S.T., et al. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev., 2017,Vol. 18(1), P. 26–45.

Granados-Chinchilla F., Rodr?guez C.J. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications // Anal Methods Chem, 2017:1315497.

Hansen L.H., S?rensen S.J. Detection and quantification of tetracyclines by whole cell biosensors // FEMS Microbiol Lett. –2000. –V. 190(2). –P. 273-278.

Hargrave B.T., Doucette L.I., Haya K. et al. A micro-dilution method for detecting oxytetracycline-resistant bacteria in marine sediments from salmon and mussel aquaculture sites and an urbanized harbour in Atlantic Canada // Mar Pollut Bull., 2008, Vol. 56(8), P. 1439–1445.

Hern?ndez E., Bargiela R., Diez M.S. et al. Ferrer Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity // Gut Microbes, 2013, Vol. 4, P. 306–315.

Hsiao Y.M., Ko J.L., Lo C.C. Determination of tetracycline and streptomycin in mixed fungicide products by capillary zone electrophoresis // J Agric Food Chem., 2001, Vol. 49(4),P. 1669–1674.

Javid A., Mesdaghinia A., Nasseri S. et al. Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran Iran // J. Environ. Heal. Sci. Eng., 2016, Vol. 14, P. 1–5.

Jones R.N., Flonta M., Gurler N. et al. Resistance surveillance program report for selected European nations (2011) // Diagn Microbiol Infect Dis.,2014,Vol. 78(4),P. 429–436.

Kazimierczak K.A., Rincon M.T., Patterson A.J., et al. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones // Antimicrob Agents Chemother, 2008, Vol. 52, P. 4001–4009.

Larsen I., Hjulsager C.K., Holm A. et al. A randomised clinical trial on the efficacy of oxytetracycline dose through water medication of nursery pigs on diarrhoea, faecal shedding of Lawsonia intracellularis and average daily weight gain // Preventive Veterinary Medicine,2016,Vol. 123, P. 52–59.

Laurent J.W. Alternatives to Common Preventive Uses of Antibiotics for Cattle, Swine, and Chickens. NRDC Report. 2018 https://www.nrdc.org/resources/alternatives-common-preventive-uses-antibiotics-cattle-swine-and-chickens.

Maron D.F., Smith T.J., Nachman K.E. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey // Global Health, 2013, Vol. 9, P. 48.

Meek R.W., Vyas H., Piddock L.J. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? // PLoS Biol.2015;13:e1002266.

Mendes R.E., Farrell D.J., Sader H.S. et al. Update of the telavancin activity in vitro tested against a worldwide collection of Gram-positive clinical isolates (2013), when applying the revised susceptibility testing method // Diagn Microbiol Infect Dis., 2015,Vol. 81(4), P. 275–279.

Miranda J.M., Rodr?guez J.A., Gal?n-Vidal C.A. Simultaneous determination of tetracyclines in poultry muscle by capillary zone electrophoresis // J Chromatogr A., 2009, Vol. 1216(15), P. 3366–3371.

Nobel Y.R., Cox L.M., Kirigin F.F. et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment // Nature Communications,2015,Vol. 6, P. 7486.

O’Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014 https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.

Prescott J.F., Baggot J.D., Walker R.D. Antimicrobial Therapy in Veterinary Medicine // Ames, IA, USA Blackwell Scientific Publications, 2006, P. 121–139.

Price R. O'Neill report on antimicrobial resistance: funding for antimicrobial specialists should be improved // Eur J Hosp Pharm., 2016, Vol. 23(4), P. 245–247.

Raport from PEW Charitable Trust Alternatives to Antibiotics in Animal Agriculture. 2019 https://www.pewtrusts.org/~/media/assets/2017/07/alternatives_to_antibiotics_in_animal_agriculture.pdf.

Raport of IACG No Time to Wait: Securing the Future from Drug-Resistant Infections. 2019 https://www.who.int/antimicrobial-resistance/interagency-coordination- group/IACG_final_summary_EN.pdf?ua=1

Riley L.W., Raphael E., Faerstein E. Obesity in the United States- dysbiosis from exposure to low-dosage antibiotics? // Frontiers in Public Health., 2013, Vol. 69, P. 1–8.

Roca-Saavedra P., Mendez-Vilabrille V., Miranda J.M. et al. Food additives, contaminants and other minor components: Effects on human gut microbiota-a review // Journal of Physiology and Biochemistry, 2018,Vol. 74, P. 69–83.

Schmidt T.S.B., Raes J., Bork P. The human gut microbiome: from association to modulation Cell.,2018,Vol. 172, P. 1198–1215.

Seal B.S., Drider D., Oakley B.B. et al. Microbial-derived products as potential new antimicrobials // Vet Res., 2018, Vol. 49(1), P. 66.

Siddiqui M.R., AlOthman Z.A., Rahman N. Analytical techniques in pharmaceutical analysis: a review // Arabian Journal of Chemistry, 2013.

Stein G.E., Craig W.A. Tigecycline: a critical analysis // Clin Infect Dis., 2006, Vol. 43(4), P. 518–524.

Stokstad E.L., Jukes T.H. The multiple nature of the animal protein factor. J Biol Chem., 1949, Vol. 180(2), P. 647–654.

The 2019 WHO. AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. World Health Organization; Geneva, Switzerland: 2019.

Tumini M., Nagel O.G., Molina P., et al. Novel bioassay using Bacillus megaterium to detect tetracycline in milk // Rev Argent Microbiol., 2016,Vol. 48(2), P. 143–146.

van Duijkeren E., Greko C., Pringle M. et al. Pleuromutilins: use in food-producing animals in the European Union, development of resistance and impact on human and animal health. // Antimicrob Chemother, 2014, Vol. 69(8, P. 2022–2031.

Zhang Y., Keerthisinghe T.P., Han Y. et al. “Cocktail” of xenobiotics at human relevant levels reshapes the gut bacterial metabolome in a species-specific manner // Environ. Sci. Technol., 2018,Vol. 52, P. 11402–11410.

Shulgina L.V., Yakush E.V., Shulgin Yu.P., Shenderyuk V.V., Chukalova N.N., Baholdina L.P. Antibiotics in aquaculture and their ecological significance. A review // Izv. TINRO, 2015, Vol. 181, Р. 216–230.

Загрузки

Опубликован

2021-11-17

Выпуск

Раздел

Зоотехния и ветеринария

Наиболее читаемые статьи этого автора (авторов)