Microbiome of the rumen of young cattle receiving dietary supplements with copper and wormwood grass: composition and functional profile

Authors

  • Elena Vladimirovna Sheida Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
  • Vitaly Aleksandrovich Ryazanov Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
  • Galimzhan Kalikhanovich Duskaev Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
  • Shamil Gafiullovich Rakhmatullin Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

DOI:

https://doi.org/10.28983/asj.y2024i1pp96-105

Keywords:

microbiome, bacteria, scar, biodiversity, ruminants, copper, wormwood grass

Abstract

The study is aimed at studying the taxonomic composition of the rumen microbiota in vivo with the additional inclusion of wormwood grass and the trace element copper in the diet of cattle. In this study, wormwood grass, a natural source of phytobiotic substances that improve digestion, and copper bioplex were provided as a feed additive. The control group received the main ration (OR), I experimental group – OR + wormwood (2.0 g / kg SV); II experimental group – OR + Cu (5.0 mg / kg SV); III experimental group – OR + wormwood (at a dose of 2.0 g/ kg SV) + Cu (5.0 mg/kg SV). In the studies, bulls of the Kazakh white-headed breed were used, aged 14 months, with a live weight of 360-380 kg, in the amount of 4 heads. The studies were carried out using the 4?4 Latin square method. After 60 days of supplementation, genomic DNA was extracted from the scar fluid and prepared for sequencing of the 16S rRNA gene to characterize the composition of the rumen microbiota. The results showed that feed additives really changed the microbiome of the calves' rumen. The Shannon diversity Index (p?0.05) showed a significant difference between the groups. The microbiota of the rumen of calves, in whose diet wormwood grass and the composition of wormwood grass and copper substances were introduced, differed in higher diversity compared to calves fed with copper (intermediate alpha diversity) and the control group. Differentially distributed taxa were identified: Bacteroidales, Lachnospiraceae, Ruminococcaceae, Firmicutes (p?0.05). Additional inclusion of copper showed that of the twelve genera characterized by differential abundance, the number of uncultivated Firmicutes bacteria (p?0.05) was the most differentiated in the rumen compared to the control. The inclusion of wormwood and copper herb compositions showed a difference in the number of uncultivated Bacteroidales bacteria in the direction of an increase of 12.7% (p?0.05) compared with the control. Also in this group, an increase in the abundance of representatives of the Candidatus Saccharibacteria family was noted. Changes in the taxonomic composition of the rumen microbiome against the background of the combined use of herbal preparations and mineral substances are described for the first time.

Downloads

Download data is not yet available.

References

Jami E., White B. A., Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE. 2014;9(1):e85423. pmid:24465556.

Morgavi D. P., Kelly W. J., Janssen P. H., Attwood G. T. Rumen microbial (meta)genomics and its application to ruminant production. Animal. 2013;7(s1):184–201. pmid:23031271.

Khafipour E., Li S., Plaizier J. C., Krause D. O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology. 2009;75(22):7115–24. pmid:19783747.

Morgan X. C., Huttenhower C., Butler R., Choudhuri J., Chuang H. Chapter 12: Human Microbiome Analysis. PLoS Computational Biology. 2012;8(12):e1002808. pmid:23300406.

Chaucheyras-Durand F., Ossa F. Review: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Professional Animal Scientist. 2014;30(1):1–12.

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 2013;41(1):e1. pmid:22933715.

Joshua C., McCann T. A. W., Loor J. J. High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism. Bioinformatics and Biology Insights. 2014;(8):109–125. pmid:24940050.

AЯhauer K. P., Meinicke P. On the estimation of metabolic profiles in metagenomics; 2013. Available from: http://drops.dagstuhl.de/opus/volltexte/2013/4238/.

Langille M. G. I., Zaneveld J., Caporaso J. G., McDonald D., Knights D., Reyes J. A. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 2013;31(9):814–821. pmid:23975157.

Petri R. M., Schwaiger T., Penner G. B., Beauchemin K. A., Forster R. J., McKinnon J. J. Characterization of the Core Rumen Microbiome in Cattle during Transition from Forage to Concentrate as Well as during and after an Acidotic Challenge. PLoS ONE. 2013;8(12):e83424. pmid:24391765.

Thoetkiattikul H., Mhuantong W., Laothanachareon T., Tangphatsornruang S., Pattarajinda V., Eurwilaichitr L. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Current Microbiology. 2013;67(2):130–137. pmid:23471692.

Golder H. M., Denman S. E., McSweeney C., Wales W. J., Auldist M. J., Wright M. M. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Journal of Dairy Science. 2014;97(9):5763–5785. pmid:24997657.

Long M., Feng W. J., Li P., Zhang Y., He R. X., Yu L. H. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro. Research in Veterinary Science. 2014;96(1):28–29. pmid:24360648 .

Таксономическая и функциональная характеристика микробиоты рубца лактирующих коров под влиянием пробиотика целлобактерина+ / Е. А. Йылдырым [и др.]. Сельскохозяйственная биология. 2020. Т. 55. № 6. С. 1204–1219. [Yildirym E. A., Laptev G.Yu., Ilyina L. A., Dunyashev T. P., Tyurina D. G., Filippova V. A., Brazhnik E. A., Tarlavin N. V., Dubrovin A. V., Novikova N. I., Soldatova V. V., Zaitsev S. Yu. Taxonomic and functional characteristics of the rumen microbiota of lactating cows under the influence of the probiotic cellobacterin+. Agricultural Biology. 2020;55(6):1204–1219].

Nisbet D. J., Callaway T. R., Edrington T. S., Anderson R. C., Krueger N. Effects of the Dicarboxylic Acids Malate and Fumarate on E. coli O157:H7 and Salmonella enterica Typhimurium Populations in Pure Culture and in Mixed Ruminal Microorganism Fermentations. Current Microbiology. 2009;58(5):488–492. pmid:19194750.

De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K. J. C., Gianesella M. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Veterinary Research. 2016;12(1):29. pmid:26896166.

Шейда Е. В. Изучение влияния различных добавок на ферментативные процессы в рубце и таксономический состав микробиома // Аграрный вестник Урала. 2022. № 3(218). С. 72–82. [Sheyda E. V. Study of the influence of various additives on enzymatic processes in the rumen and the taxonomic composition of the microbiome. Agrarian Bulletin of the Urals. 2022;3(218):72–82].

Влияние растительных экстрактов на метагеном рубца / Ш. Г. Рахматуллин [и др.]. Животноводство и кормопроизводство. 2021. Т. 104. № 3. С. 94–103. [Rakhmatullin Sh. G., Nurzhanov B. S., Duskaev G. K., Kvan O. V., Sheyda E. V. Effect of plant extracts on the rumen metagenome. Livestock and Feed Production. 2021;104(3): 94–103].

Лекарственные растения и их применение в животноводстве: учебное пособие / В. А. Сечин [и др.]. Оренбург, 2006. 312 с. [Sechin V. A., Karakulev V. V., Gromov A. A., Zhukov A. P., Samoilov K. N., Panteleev A. P. Medicinal plants and their use in animal husbandry: textbook. Orenburg; 2006. 312 p.].

Faulkner M. J., Wenner B. A., Solden L. M., Weiss W. P. Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. Journal of Dairy Science. 2017;100(2):1037–1044. pmid:27988129.

Нормы и рационы кормления сельскохозяйственных животных / А. П. Калашников [и др.]. М., 2003. 3-е изд. 456 с. [Kalashnikov A. P., Fisinin V. I., Shcheglov V. V., Kleimenova N. I. Norms and rations for feeding farm animals. M.; 2003. 3rd ed. 456 p.

Zhang J., Kobert K., Flouri T., Stamatakis A.PEAR: A fast and accurate Illumina Paired-End reAd merger. Bioinformatics. 2014;30(5): 614–620 (doi: 10.1093/bioinformatics/btt593).

Shannon C. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;379–427.

Simpson E. H. Measurement of diversity. Nature. 1949;163:688.

Mao S., Zhang M., Liu J., Zhu W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Scientific Reports. 2015;5(April):16116. pmid:26527325.

Jami E., Israel A., Kotser A., Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. The ISME Journal. 2013;7(6):1069–79. pmid:23426008.

Popova M., McGovern E., McCabe M. S., Martin C., Doreau M., Arbre M. The structural and functional capacity of ruminal and cecal microbiota in growing cattle was unaffected by dietary supplementation of linseed oil and nitrate. Frontiers in Microbiology. 2017;8(MAY):937. pmid:2859676.

Kafantaris I., Kotsampasi B., Christodoulou V., Kokka E., Kouka P., Terzopoulou Z. Grape pomace improves antioxidant capacity and faecal microflora of lambs. Journal of Animal Physiology and Animal Nutrition. 2017;101(5):e108–e121. pmid:27753147.

Published

2024-02-06

Issue

Section

Zootechnics and veterinary

Most read articles by the same author(s)