Evaluation of microgreens of coriander (Coriandrum sativum L.) grown in vertical farming using associative rhizobacteria

Authors

  • Jan Viktorovich Puhalsky St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAN) - St. Petersburg Federal Research Center RAS
  • Nikolay Ivanovich Vorobyov All-Russia Research Institute for Agricultural Microbiology
  • Alla Ivanovna Yakubovskaya Scientific Research Institute of Agriculture of Crimea
  • Marina Alekseevna Astapova St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAN) - St. Petersburg Federal Research Center RAS
  • Irina Alekseevna Kameneva Scientific Research Institute of Agriculture of Crimea
  • Dmitry Konstantinovich Levonevsky St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAN) - St. Petersburg Federal Research Center RAS

DOI:

https://doi.org/10.28983/asj.y2024i3pp55-64

Keywords:

coriander, vertical farming, hydroponics, rhizobacterium Azospirillum, computational neural network, cognitive significance index of empirical data

Abstract

To study the effect of associative rhizobacteria on the growth, yield and change in the biochemical composition of young plants (microgreens) of coriander (Coriandrum sativum L.) cultivated in protected ground conditions, a model vegetation experiment was carried out on an experimental multi-tiered hydroponic installation. The experiment included three options for using a nutrient substrate: a nutrient solution based on mineral salts; 1.0% suspension of Azospirillum spp. and the combined use of chemistry with an inoculant. The control is the option of growing plants on distilled water without other additives. After 14 days, the highest values in terms of yield and plant height were noted in the variant with the use of mineral liquid. The increase in biometric indicators of plant weight was 7.7% in comparison with the control. Also, in this variant, the plants gained faster in height (+4.4%), during the assessment of the entire cycle of their growth dynamics. The lowest values for biomass and height were noted for the variant using pure inoculant. This result was also reflected in the analysis of plant biochemistry. A decrease in the concentration of total chlorophyll and ascorbic acid in green biomass by 15.0 and 20.0%, respectively, was recorded. The highest values for the content of vitamin C were obtained in the variant of the combined use of mineral salts and bacteria. The increase in control here was 23.5%. On the mineral solution, this figure also increased, but the increase was only 5.8%. An interesting fact is that the total accumulation of essential macroelements in the shoots decreased by an average of 12.0% for all variants, compared to the control. In addition, in all variants, an increase in the proportion of sodium was noted, with a decrease in the concentration of potassium. This may be due to the redistribution of nutrients in favor of the development of the root system at an early stage of vegetation, since the absorption and transport of these elements through ion channels in plants occurs with the participation of the same proteins.

Downloads

Download data is not yet available.

References

Вершинина О. В., Князева И. В. Технологические приемы выращивания кориандра на вертикальных стеллажах // Вестник Ульяновской государственной сельскохозяйственной академии. 2022. № 2(58). С. 100–106.

Использование ауксиновых регуляторов роста для повышения продуктивности кориандра посевного (Coriandrum sativum L.) в условиях нечерноземной зоны РФ / Е. Л. Маланкина [и др.] // Известия Тимирязевской сельскохозяйственной академии. 2013. № 3. С. 146–150.

Рогачев А. Ф., Мелихова Е. В., Зеляковский Д. В. Фитотронный комплекс на основе системы технического зрения для интенсивного выращивания растений // Известия Волгоградского государственного технического университета. 2023. № 4(275). С. 82–88.

Специализированные коллекции эфиромасличных культур ФГБУН «НИИСХ Крыма». Кориандр посевной Coriandrum sativum L., фенхель обыкновенный Foeniculum vulgare Mill / Н. В. Невкрытая [и др.] // Методические рекомендации по селекции и семеноводству эфиромасличных культур семейства Сельдерейные Apiaceae L. Симферополь: АРИАЛ, 2022. 200 с.

Степанова Н. Ю. Агробиологическая оценка сортов кориандра в условиях Ленинградской области // Известия Санкт-Петербургского государственного аграрного университета. 2021. Т. 4. С. 20–27.

Шаляпина А. Ф., Макаров П. Н. Технология выращивания шпината и кориандра в закрытых системах методом проточной гидропоники в установках вертикального типа // Безопасный Север – чистая Арктика: материалы III Всерос. науч.-практ. конф. Сургут. 2020. С. 312–318.

Coriander (Coriandrum sativum L.) in Combination with Organic Amendments and Arbuscular Mycorrhizal Inoculation: An Efficient Option for the Phytomanagement of Trace Elements-Polluted Soils / J. Fontaine, J. Duclercq, N. Facon, D. Dewaele, F. Laruelle, B. Tisserant, A. Loun?s-Hadj Sahraoui // Microorganisms. 2022. Vol. 10. No. 11. 2287.

Darzi M. T., Shirkhodaei M., Hadi M. H. S. Effects of Vermicomost and Azotobacter and Azospirillum bacteria on quantity and quality of essential oil of coriander (Coriandrum sativum L.) // International Journal of Farming and Allied Sciences. 2013. Vol. 2. No. 5. P. 1277–1283.

Effect of mineral vs. biofertilizer on the growth, yield and essential oil content of coriander (Coriandrum sativum L.) / A. R. Rahimi, K. Mashayekhi, S. Amini, E. Soltani // Medicinal and Aromatic Plant Science and Biotechnology. 2009. Vol. 3. No. 2. P. 82–84.

Kacar B., ?nal A. Bitki Analizleri. Nobel Yay?n No: 1241 // Fen Bilimleri. 2008. Vol. 63. No. 1.

Kampfenkel K., Vanmontagu M., Inz? D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue // Analytical biochemistry. 1995. Vol. 225. No. 1. P. 165–167.

Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in enzymology. Academic Press, 1987. Vol. 148. P. 350–382.

Lichtenthaler H. K., Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UVVIS spectroscopy // Current protocols in food analytical chemistry. 2001. Vol. 1. No. 1. P. F4. 3.1–F4. 3.8.

Malhotra S. K., Vashishtha B. B., Apparao V. V. Influence of nitrogen Azospirillum sp. and farmyard manure on growth, yield and incidence of stem gall diseasein coriander (Coriandrum sativum L.) // Journal of Spices and Aromatic Crops. 2006. Vol. 15. No. 2. P. 115–117.

Nondestructive determination of total chlorophyll content in maize using three-wavelength diffuse reflectance / D. D. Gu, W. Z.Wang, J. D. Hu, X. M. Zhang, J. B. Wang, B. S. Wang // Journal of Applied Spectroscopy. 2016. Vol. 83. P. 541–547.

Rendimento e qualidade fisiol?gica de sementes de coentro cultivado com aduba??o org?nica e mineral / E. U. Alves, A. P. Oliveira, L. A. Bruno, R. Sader, A. U. Alves // Revista Brasileira de Sementes. 2005. Vol. 27. No. 1. P. 132–137.

Singh S. P. Effect of Azospirillum on growth and yield parameters of coriander (Coriandrum sativum L.) // Journal of Eco-friendly Agriculture. 2016. Vol. 11. No. 1. P. 15–17.

Spinach plants favor the absorption of K+ over Na+ regardless of salinity, and may benefit from Na+ when K+ is deficient in the soil / J. F. Ferreira, J. B. da Silva Filho, X. Liu, D. Sandhu // Plants. 2020. Vol. 9. No. 4. P. 507.

Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // Journal of plant physiology. 1994. Vol. 144. No. 3. P. 307–313.

Published

2024-03-18

Issue

Section

Agronomy

Most read articles by the same author(s)